
Sistem pelacakan tren adaptif yang didasarkan pada multiple averages adalah strategi perdagangan kuantitatif tingkat tinggi yang mengintegrasikan lima rata-rata bergerak yang dapat disesuaikan, filter multi-lapisan, dan mekanisme konfirmasi untuk mengidentifikasi dan memanfaatkan tren pasar yang berkelanjutan. Strategi ini menggunakan teknologi penyeimbangan nuklir daripada rata-rata bergerak tradisional, memberikan efek penyeimbangan yang lebih fleksibel dan kemampuan beradaptasi yang dapat beradaptasi dengan berbagai kondisi pasar dan kerangka waktu.
Fungsi inti termasuk: visualisasi tren pasar saat ini menggunakan “band rata-rata” yang terdiri dari lima rata-rata bergerak; mengurangi kebisingan dan sinyal palsu melalui filter RSI, filter kekuatan tren, dan periode konfirmasi tren; memicu sinyal masuk hanya jika kondisi tertentu terpenuhi; dan menggunakan berbagai opsi keluar (seperti stop loss peratusan tracking, stop loss ATR tracking, target keuntungan ATR, dan stop loss hardness) untuk mengelola risiko dan melindungi keuntungan.
Logika inti dari strategi ini berkisar pada komponen-komponen kunci berikut:
Rata-rata bergerak rata-rataStrategi: Menggunakan teknik perataan inti untuk menggantikan rata-rata bergerak standar, memberikan efek perataan yang lebih fleksibel dan adaptif daripada MA tradisional. Mendukung tiga jenis inti:
alphaDanbetaParameter independen mengontrol lag positif-negatif, sehingga MA bereaksi berbeda terhadap kenaikan dan penurunan harga.bandwidthParameter yang mengontrol lebar kurva berbentuk bel.bandwidthParameterGaris rata: Lima MA membentuk “garis rata-rata” pada grafik, di mana susunan dan posisi relatifnya memberikan indikasi visual dari kekuatan dan arah tren.
Pengujian silang: Strategi memantau persilangan antara MA berurutan dalam pita rata-rata, dan pengguna dapat menentukan jumlah persilangan yang diperlukan untuk menghasilkan sinyal potensial.
Filter RSI: membantu menghindari masuk dalam keadaan pasar yang terlalu diperpanjang. Ketika masuk dengan banyak mata uang, RSI harus berada di bawah level oversold; ketika masuk dengan mata uang kosong, harus berada di atas level overbought.
Filter intensitas tren: Menggunakan RSI pada rata-rata bergerak untuk mengukur kekuatan tren, memastikan bahwa perdagangan dilakukan di arah tren yang kuat dan mapan.
Konfirmasi trenUntuk lebih mengurangi sinyal palsu, persyaratan masuk (MA crossover, RSI dan intensitas tren) harus memenuhi jumlah K-line yang ditentukan secara berturut-turut sebelum benar-benar memicu perdagangan.
Keluar dari logikaStrategi memprioritaskan keluar dalam urutan berikut: Hard Stop, Tracking Stop (persentabel atau berdasarkan ATR) dan Profit (berdasarkan ATR). Ini memastikan bahwa kerugian diminimalkan dan keuntungan dilindungi.
Ketinggian yang dapat disesuaikan dengan kelancaran intiMenggunakan kernel smoothing (khususnya kernel Beta) memberikan tingkat kontrol terhadap responsifitas MA, yang tidak tersedia dalam MA standar. Hal ini memungkinkan untuk mengambil pendekatan yang lebih adaptif dan halus terhadap pelacakan tren.
Kombinasi kekuatan tren dan konfirmasiFilter kekuatan tren (RSI dengan MA) dan kombinasi periode konfirmasi tren memberikan mekanisme penyaringan yang kuat, melampaui membaca MA atau RSI yang sederhana. Ini membantu menyaring tren lemah dan pergerakan yang bergoyang.
Berbagai pilihan untuk memilih keluar: Strategi ini memiliki logika keluar yang sangat kompleks, menawarkan kombinasi dari stop loss dan level keuntungan yang tetap dan dinamis. Prioritaskan untuk memastikan keluar yang paling konservatif (hard stop loss) yang pertama kali dipicu, diikuti oleh tracking stop loss, dan akhirnya target keuntungan.
Pengelompokan masukan secara keseluruhan: Semua input dikelompokkan ke dalam kelompok untuk aspek tertentu dari strategi kontrol, sehingga pengguna dapat dengan mudah dan cepat menemukan dan menyesuaikan input.
Pengendalian arah transaksiTidak seperti banyak strategi, strategi ini memungkinkan untuk secara independen mengaktifkan atau menonaktifkan multihead dan blank head trading.
Sistem KecenderunganIndikator ini menggabungkan beberapa aspek yang diperlukan untuk berdagang: sinyal masuk, perhitungan stop loss, perhitungan keuntungan.
Tantangan pengoptimalan parameterKarena strategi memiliki banyak parameter, ada kemungkinan risiko over-fitting. Penyesuaian parameter yang terlalu halus dapat menyebabkan strategi berkinerja baik dalam pengujian ulang, tetapi gagal dalam perdagangan nyata.
Tanggapan lambat terhadap perubahan trenMeskipun strategi ini bertujuan untuk mengidentifikasi tren yang berkelanjutan, mungkin tidak bereaksi cukup cepat ketika pasar berbalik secara drastis, menyebabkan sebagian mundur. Sensitivitas terhadap perubahan tren dan kemampuan untuk memfilter kebisingan dapat diimbangi dengan menyesuaikan panjang MA dan parameter inti.
MA sinyal palsu silang: Meskipun ada beberapa lapisan filter, sinyal palsu masih dapat dihasilkan di pasar yang bergoyang. Disarankan untuk menggunakan strategi ini di pasar tren yang ditentukan, atau meningkatkan periode konfirmasi tren untuk mengurangi sinyal palsu.
Hal ini juga dapat terjadi pada anak-anak.: Dalam pasar yang bergejolak besar, stop loss dapat dipicu terlalu dini, menyebabkan penurunan harga dan pemulihan tren yang terlewatkan. Stop loss berdasarkan ATR dapat dipertimbangkan dan disesuaikan sesuai dengan volatilitas pasar.
Kompleksitas risikoKompleksitas kebijakan dapat membuat pemecahan masalah dan pemantauan real-time menjadi sulit. Disarankan untuk memulai dengan konfigurasi sederhana, dan menambahkan fungsionalitas yang kompleks secara bertahap, memastikan bahwa peran setiap komponen dipahami dengan baik.
Adaptasi kerangka waktuStrategi saat ini dapat dioptimalkan lebih lanjut sehingga dapat menyesuaikan parameter secara otomatis sesuai dengan berbagai kerangka waktu. Misalnya, fungsi penyesuaian parameter otomatis berdasarkan kerangka waktu dapat ditambahkan sehingga strategi dapat bekerja secara efektif pada grafik garis hari, garis jam, atau garis menit.
Deteksi lingkungan pasar: Menambah mekanisme deteksi otomatis lingkungan pasar ((trend, interval, atau volatilitas tinggi) dan menyesuaikan parameter perdagangan sesuai dengan hasil deteksi. Misalnya, meningkatkan intensitas penyaringan di pasar interval atau menyesuaikan target keuntungan, meredakan kondisi penyaringan di pasar tren.
RSI Dinamis: Merancang RSI untuk overbought dan oversold dengan nilai yang dinamis, bukan statis, yang secara otomatis menyesuaikan dengan volatilitas pasar baru-baru ini. Hal ini dapat meningkatkan kemampuan strategi untuk beradaptasi dalam kondisi pasar yang berbeda.
Indikator fluktuasi kuantitatif terintegrasiTerintegrasi strategi dengan indikator volatilitas (misalnya Bollinger Bandwidth) untuk menyesuaikan target stop loss dan profit dalam lingkungan yang sangat fluktuatif, mengurangi risiko terjerat tren yang efektif.
Konfirmasi multi-frame waktu: Menambahkan konfirmasi tren pada kerangka waktu yang lebih tinggi untuk memastikan bahwa arah perdagangan konsisten dengan tren yang lebih besar. Misalnya, perdagangan dilakukan hanya ketika tren garis hari sesuai dengan arah tren garis jam.
Pemantauan dan adaptasi kinerja: Sistem pemantauan real-time untuk kinerja strategi, melacak indikator seperti tingkat kemenangan, rasio untung rugi, dan pengembalian maksimum, secara otomatis menyesuaikan parameter atau menghentikan perdagangan ketika indikator kinerja turun di bawah batas default.
Pembelajaran Mesin: Menjelajahi mengintegrasikan algoritma pembelajaran mesin ke dalam proses optimasi parameter, sehingga strategi dapat mempelajari kombinasi parameter terbaik dari data historis, dan terus meningkatkannya seiring dengan akumulasi data baru.
Sistem pelacakan tren adaptif berbasis Core Smoothing Multiple Meanline adalah alat pelacakan tren yang kuat dan fleksibel yang menggabungkan kejernihan visual dari pita rata-rata bergerak dengan kemampuan penyaringan dan manajemen risiko yang canggih dari Core Smoothing, RSI, intensitas tren, dan berbagai opsi keluar. Ini dirancang khusus untuk pedagang yang ingin memiliki alat yang dapat disesuaikan dan kuat untuk mengidentifikasi dan memperdagangkan tren pasar yang berkelanjutan.
Keuntungan terbesar dari strategi ini adalah kemampuan yang sangat tinggi untuk menyesuaikan dan beradaptasi, memungkinkan untuk beradaptasi dengan berbagai kondisi pasar. Melalui teknik pelurus inti, ini dapat memberikan kontrol yang lebih halus daripada rata-rata bergerak tradisional, dan mekanisme penyaringan dan konfirmasi berlapis membantu mengurangi sinyal palsu. Sementara itu, sistem manajemen risiko yang komprehensif menyediakan berbagai strategi keluar yang memastikan untuk meminimalkan kerugian dan melindungi keuntungan.
Namun, pengguna harus memperhatikan tantangan dalam mengoptimalkan parameter, menghindari over-fitting, dan menyesuaikan strategi sesuai dengan kondisi pasar tertentu. Disarankan untuk melakukan pengetesan yang memadai dan pengujian ke depan untuk memastikan bahwa strategi dapat berjalan dengan stabil di berbagai kondisi pasar. Dengan evaluasi dan pengoptimalan secara teratur, strategi ini berpotensi menjadi aset berharga dalam kotak alat pedagang tren yang sukses.
/*backtest
start: 2024-03-28 00:00:00
end: 2025-03-27 00:00:00
period: 1d
basePeriod: 1d
exchanges: [{"eid":"Futures_Binance","currency":"ETH_USDT"}]
*/
//@version=5
strategy("B4100 - NW Trend Ribbon Strategy", overlay=true, default_qty_type = strategy.percent_of_equity, default_qty_value = 100, commission_type = strategy.commission.percent, commission_value = 0.02)
// === Optimized Functions ===
f_calculate_beta_kernel(length, alpha, beta) =>
kernel = array.new_float(length, 0)
sum = 0.0
for i = 0 to length - 1
x = i / (length - 1)
w = math.pow(x, alpha - 1) * math.pow(1 - x, beta - 1)
array.set(kernel, i, w)
sum += w
for i = 0 to length - 1
array.set(kernel, i, array.get(kernel, i) / sum)
kernel
f_calculate_gaussian_kernel(length, bandwidth) =>
kernel = array.new_float(length, 0)
sum = 0.0
for i = 0 to length - 1
x = i / (length - 1)
w = math.exp(-0.5 * math.pow((x - 0.5) / bandwidth, 2))
array.set(kernel, i, w)
sum += w
for i = 0 to length - 1
array.set(kernel, i, array.get(kernel, i) / sum)
kernel
f_calculate_epanechnikov_kernel(length, bandwidth) =>
kernel = array.new_float(length, 0)
sum = 0.0
for i = 0 to length - 1
x = i / (length - 1)
w = math.max(0.0, 1 - math.pow((x - 0.5) / bandwidth, 2))
array.set(kernel, i, w)
sum += w
for i = 0 to length - 1
array.set(kernel, i, array.get(kernel, i) / sum)
kernel
f_apply_kernel_ma(src, kernel, length) =>
sum = 0.0
for i = 0 to length - 1
sum += src[i] * array.get(kernel, i)
sum
f_trend_strength(ma, length) =>
ts = ta.rsi(ma, length) / 100
ts
// === Inputs ===
src = input.source(close, title="Price Source", tooltip="Select the price data used for calculations. 'Close' is the most common, but you can also use 'Open', 'High', 'Low', 'HL2' (typical price), etc.")
// MA Parameters
maGroup = "Moving Average Settings"
maCrossoverGroup = "Moving Average Crossover Settings"
rsiFilterGroup = "RSI Filter Settings"
trendStrengthGroup = "Trend Strength Filter Settings"
trendConfirmGroup = "Trend Confirmation Settings"
trailingStopGroup = "Trailing Stop Settings"
atrTrailingStopGroup = "ATR Trailing Stop Settings"
atrTakeProfitGroup = "ATR Take Profit Settings"
hardStopGroup = "Hard Stop Loss Settings"
tradeDirectionGroup = "Trade Direction Control"
length1 = input.int(20, title="MA1 Length", minval=1, tooltip="Number of bars used to calculate the first Moving Average.", group=maGroup)
kernelType1 = input.string(title="MA1 Kernel Type", defval="Beta", options=["Beta", "Gaussian", "Epanechnikov"], tooltip="Select the type of smoothing kernel for MA1. 'Beta' allows for lag adjustment. 'Gaussian' and 'Epanechnikov' use a bandwidth.", group=maGroup)
alpha1 = input.float(3.0, title="MA1 Beta Kernel +Lag", minval=1, maxval=10, tooltip="For Beta kernel only: Higher values increase *positive* lag (MA reacts *slower* to price increases).", group=maGroup)
beta1 = input.float(3.0, title="MA1 Beta Kernel -Lag", minval=1, maxval=10, tooltip="For Beta kernel only: Higher values increase *negative* lag (MA reacts *slower* to price decreases).", group=maGroup)
bandwidth1 = input.float(0.3, title="MA1 Bandwidth", minval=0.1, maxval=10.0, tooltip="For Gaussian/Epanechnikov kernels: Smaller values create a *tighter* fit to the price (more sensitive). Larger values create a *smoother*, less sensitive MA.", group=maGroup)
length2 = input.int(100, title="MA2 Length", minval=1, tooltip="Number of bars for the second Moving Average.", group=maGroup)
kernelType2 = input.string(title="MA2 Kernel Type", defval="Gaussian", options=["Beta", "Gaussian", "Epanechnikov"], tooltip="Kernel type for MA2 (see MA1 Kernel Type for details).", group=maGroup)
alpha2 = input.float(3.0, title="MA2 Beta Kernel +Lag", minval=1, maxval=10, tooltip="Beta kernel positive lag for MA2 (see MA1 Beta Kernel +Lag for details).", group=maGroup)
beta2 = input.float(3.0, title="MA2 Beta Kernel -Lag", minval=1, maxval=10, tooltip="Beta kernel negative lag for MA2 (see MA1 Beta Kernel -Lag for details).", group=maGroup)
bandwidth2 = input.float(0.3, title="MA2 Bandwidth", minval=0.1, maxval=10.0, tooltip="Bandwidth for MA2 (see MA1 Bandwidth for details).", group=maGroup)
length3 = input.int(150, title="MA3 Length", minval=1, tooltip="Number of bars for the third Moving Average.", group=maGroup)
kernelType3 = input.string(title="MA3 Kernel Type", defval="Epanechnikov", options=["Beta", "Gaussian", "Epanechnikov"], tooltip="Kernel type for MA3.", group=maGroup)
alpha3 = input.float(3.0, title="MA3 Beta Kernel +Lag", minval=1, maxval=10, tooltip="Beta kernel positive lag for MA3.", group=maGroup)
beta3 = input.float(3.0, title="MA3 Beta Kernel -Lag", minval=1, maxval=10, tooltip="Beta kernel negative lag for MA3.", group=maGroup)
bandwidth3 = input.float(0.3, title="MA3 Bandwidth", minval=0.1, maxval=10.0, tooltip="Bandwidth for MA3.", group=maGroup)
length4 = input.int(200, title="MA4 Length", minval=1, tooltip="Number of bars for the fourth Moving Average.", group=maGroup)
kernelType4 = input.string(title="MA4 Kernel Type", defval="Beta", options=["Beta", "Gaussian", "Epanechnikov"], tooltip="Kernel type for MA4.", group=maGroup)
alpha4 = input.float(3.0, title="MA4 Beta Kernel +Lag", minval=1, maxval=10, tooltip="Beta kernel positive lag for MA4.", group=maGroup)
beta4 = input.float(3.0, title="MA4 Beta Kernel -Lag", minval=1, maxval=10, tooltip="Beta kernel negative lag for MA4.", group=maGroup)
bandwidth4 = input.float(0.3, title="MA4 Bandwidth", minval=0.1, maxval=10.0, tooltip="Bandwidth for MA4.", group=maGroup)
length5 = input.int(250, title="MA5 Length", minval=1, tooltip="Number of bars for the fifth Moving Average.", group=maGroup)
kernelType5 = input.string(title="MA5 Kernel Type", defval="Gaussian", options=["Beta", "Gaussian", "Epanechnikov"], tooltip="Kernel type for MA5.", group=maGroup)
alpha5 = input.float(3.0, title="MA5 Beta Kernel +Lag", minval=1, maxval=10, tooltip="Beta kernel positive lag for MA5.", group=maGroup)
beta5 = input.float(3.0, title="MA5 Beta Kernel -Lag", minval=1, maxval=10, tooltip="Beta kernel negative lag for MA5.", group=maGroup)
bandwidth5 = input.float(0.3, title="MA5 Bandwidth", minval=0.1, maxval=10.0, tooltip="Bandwidth for MA5.", group=maGroup)
// Entry Logic
maCrossoversRequired = input.int(3, title="MA Crossovers Required", minval=1, maxval=5, tooltip="How many moving averages must cross each other to generate a potential trade signal. A higher number means a stronger (but potentially later) signal.", group=maCrossoverGroup)
useRsiFilter = input.bool(true, title="Use RSI Filter", tooltip="If enabled, the RSI must also be in overbought/oversold territory for a signal to be valid.", group=rsiFilterGroup)
rsiLength = input.int(7, title="RSI Length", minval=2, tooltip="Number of bars used to calculate the RSI.", group=rsiFilterGroup)
rsiOverbought = input.int(60, title="RSI Overbought", minval=50, maxval=100, tooltip="RSI level considered overbought (for short entries).", group=rsiFilterGroup)
rsiOversold = input.int(40, title="RSI Oversold", minval=0, maxval=50, tooltip="RSI level considered oversold (for long entries).", group=rsiFilterGroup)
// Trend Strength Filter
useTrendStrengthFilter = input.bool(true, title="Use Trend Strength Filter", tooltip="If enabled, the trend strength (measured by the RSI of a selected MA) must be above/below a threshold.", group=trendStrengthGroup)
trendStrengthLength = input.int(7, title="Trend Strength Length", minval=1, tooltip="Number of bars for the trend strength calculation (RSI of the selected MA).", group=trendStrengthGroup)
trendStrengthMa = input.int(1, title="Trend Strength MA", minval=1, maxval=5, tooltip="Which moving average (1-5) to use for calculating trend strength. 1 = MA1, 2 = MA2, etc.", group=trendStrengthGroup)
minTrendStrength = input.float(0.5, title="Min Trend Strength (Longs)", minval=0.0, maxval=1.0, step=0.01, tooltip="Minimum trend strength (0.0 - 1.0) required for long entries. 0.5 means the selected MA's RSI must be above 50.", group=trendStrengthGroup)
maxTrendStrength = input.float(0.5, title="Max Trend Strength (Shorts)", minval=0.0, maxval=1.0, step=0.01, tooltip="Maximum trend strength (0.0 - 1.0) required for short entries. 0.5 means the selected MA's RSI must be below 50.", group=trendStrengthGroup)
// Trend Confirmation
trendConfirmationPeriod = input.int(4, title="Trend Confirmation Period", minval=1, tooltip="Number of consecutive bars the entry conditions must be met before a trade is taken. This helps filter out false signals.", group=trendConfirmGroup)
// Exit Logic
useTrailingStop = input.bool(true, title="Use Percentage Trailing Stop", tooltip="Enable a percentage-based trailing stop loss.", group=trailingStopGroup)
trailingStopActivationPercent = input.float(2.0, title="Activation (%)", minval=0.1, step=0.1, tooltip="Percentage above/below the entry price at which the trailing stop activates.", group=trailingStopGroup) / 100
trailingStopOffsetPercent = input.float(1.0, title="Offset (%)", minval=0.1, step=0.1, tooltip="Percentage offset from the highest/lowest price reached since entry. This determines how tightly the stop trails the price.", group=trailingStopGroup) / 100
useAtrTrailingStop = input.bool(true, title="Use ATR Trailing Stop", tooltip="Enable a trailing stop based on the Average True Range (ATR).", group=atrTrailingStopGroup)
atrTrailingStopLength = input.int(1, title="ATR Length", minval=1, tooltip="Number of bars used to calculate the ATR.", group=atrTrailingStopGroup)
atrTrailingStopMult = input.float(200.0, title="ATR Multiplier", minval=0.1, tooltip="Multiplier for the ATR value. A larger multiplier creates a wider stop.", group=atrTrailingStopGroup)
useAtrTakeProfit = input.bool(false, title="Use ATR Take Profit", tooltip="Enable a take profit level based on the Average True Range (ATR).", group=atrTakeProfitGroup)
atrTakeProfitLength = input.int(14, title="ATR Length", minval=1, tooltip="Number of bars used to calculate the ATR for take profit.", group=atrTakeProfitGroup)
atrTakeProfitMultiplier = input.float(3.0, title="ATR Multiplier", minval=0.1, tooltip="Multiplier for the ATR value. A larger multiplier sets a further take profit target.", group=atrTakeProfitGroup)
useHardStopLoss = input.bool(false, title="Use Hard Stop Loss", tooltip="Enable a fixed stop loss.", group=hardStopGroup)
hardStopLossPercent = input.float(0.0, title="Hard Stop Loss (%)", minval=0.0, step=0.1, tooltip="Percentage below (long) or above (short) the entry price for the hard stop loss.", group=hardStopGroup) / 100
useAtrHardStopLoss = input.bool(false, title="Use ATR Hard Stop Loss", tooltip="Use ATR to calculate hard stop loss", group=hardStopGroup)
atrHardStopLossLength = input.int(14, title="ATR Hard Stop Loss Length", minval=1, tooltip="Length of the ATR for the hard stop loss", group=hardStopGroup)
atrHardStopLossMult = input.float(1.5, title="ATR Hard Stop Loss Multiplier", minval=0.1, tooltip="Multiplier of ATR for the hard stop loss", group=hardStopGroup)
// *** Trade Direction Control ***
enableLongs = input.bool(true, title="Enable Long Trades", group=tradeDirectionGroup)
enableShorts = input.bool(true, title="Enable Short Trades", group=tradeDirectionGroup)
// === Pre-calculate kernels (do this only once) ===
var kernel1 = array.new_float(length1, 0.0)
var kernel2 = array.new_float(length2, 0.0)
var kernel3 = array.new_float(length3, 0.0)
var kernel4 = array.new_float(length4, 0.0)
var kernel5 = array.new_float(length5, 0.0)
if barstate.isfirst
if kernelType1 == "Beta"
kernel1 := f_calculate_beta_kernel(length1, alpha1, beta1)
else if kernelType1 == "Gaussian"
kernel1 := f_calculate_gaussian_kernel(length1, bandwidth1)
else // Epanechnikov
kernel1 := f_calculate_epanechnikov_kernel(length1, bandwidth1)
if kernelType2 == "Beta"
kernel2 := f_calculate_beta_kernel(length2, alpha2, beta2)
else if kernelType2 == "Gaussian"
kernel2 := f_calculate_gaussian_kernel(length2, bandwidth2)
else // Epanechnikov
kernel2 := f_calculate_epanechnikov_kernel(length2, bandwidth2)
if kernelType3 == "Beta"
kernel3 := f_calculate_beta_kernel(length3, alpha3, beta3)
else if kernelType3 == "Gaussian"
kernel3 := f_calculate_gaussian_kernel(length3, bandwidth3)
else // Epanechnikov
kernel3 := f_calculate_epanechnikov_kernel(length3, bandwidth3)
if kernelType4 == "Beta"
kernel4 := f_calculate_beta_kernel(length4, alpha4, beta4)
else if kernelType4 == "Gaussian"
kernel4 := f_calculate_gaussian_kernel(length4, bandwidth4)
else // Epanechnikov
kernel4 := f_calculate_epanechnikov_kernel(length4, bandwidth4)
if kernelType5 == "Beta"
kernel5 := f_calculate_beta_kernel(length5, alpha5, beta5)
else if kernelType5 == "Gaussian"
kernel5 := f_calculate_gaussian_kernel(length5, bandwidth5)
else // Epanechnikov
kernel5 := f_calculate_epanechnikov_kernel(length5, bandwidth5)
// === Apply pre-calculated kernels to data ===
nw_ma1 = f_apply_kernel_ma(src, kernel1, length1)
nw_ma2 = f_apply_kernel_ma(src, kernel2, length2)
nw_ma3 = f_apply_kernel_ma(src, kernel3, length3)
nw_ma4 = f_apply_kernel_ma(src, kernel4, length4)
nw_ma5 = f_apply_kernel_ma(src, kernel5, length5)
// MA Array for easier iteration
ma_array = array.new_float(5)
array.set(ma_array, 0, nw_ma1)
array.set(ma_array, 1, nw_ma2)
array.set(ma_array, 2, nw_ma3)
array.set(ma_array, 3, nw_ma4)
array.set(ma_array, 4, nw_ma5)
// Calculate ATR values *unconditionally*
atrTrailingValue = ta.atr(atrTrailingStopLength)
atrTakeProfitValue = ta.atr(atrTakeProfitLength)
atrHardStopLossValue = ta.atr(atrHardStopLossLength)
// Calculate Trend Strength *unconditionally* (and only once)
trendStrengthValue = useTrendStrengthFilter ? f_trend_strength(array.get(ma_array, trendStrengthMa - 1), trendStrengthLength) : 0.0
// === Entry Logic ===
// MA Crossovers
longMaCrossovers = 0
shortMaCrossovers = 0
for i = 0 to 3
if array.get(ma_array, i) > array.get(ma_array, i + 1)
longMaCrossovers := longMaCrossovers + 1
if array.get(ma_array, i) < array.get(ma_array, i + 1)
shortMaCrossovers := shortMaCrossovers + 1
longCrossoverCondition = longMaCrossovers >= maCrossoversRequired
shortCrossoverCondition = shortMaCrossovers >= maCrossoversRequired
// RSI Filter
rsiValue = ta.rsi(src, rsiLength)
longRsiCondition = not useRsiFilter or (rsiValue < rsiOversold)
shortRsiCondition = not useRsiFilter or (rsiValue > rsiOverbought)
// Trend Strength Filter - Simplified Logic
longTrendStrengthCondition = not useTrendStrengthFilter or trendStrengthValue >= minTrendStrength
shortTrendStrengthCondition = not useTrendStrengthFilter or trendStrengthValue <= maxTrendStrength
// --- Trend Confirmation Logic ---
var int long_confirm_count = 0
var int short_confirm_count = 0
var bool confirmedLong = false
var bool confirmedShort = false
// Update confirmation counters
if longCrossoverCondition and longRsiCondition and longTrendStrengthCondition
long_confirm_count := long_confirm_count + 1
short_confirm_count := 0 // Reset opposite counter
else
long_confirm_count := 0
if shortCrossoverCondition and shortRsiCondition and shortTrendStrengthCondition
short_confirm_count := short_confirm_count + 1
long_confirm_count := 0 // Reset opposite counter
else
short_confirm_count := 0
// Check for confirmed trend
confirmedLong := long_confirm_count >= trendConfirmationPeriod
confirmedShort := short_confirm_count >= trendConfirmationPeriod
// Combined Entry Conditions (using confirmed trend)
longCondition = confirmedLong and enableLongs // Added trade direction check
shortCondition = confirmedShort and enableShorts // Added trade direction check
// === Exit Logic ===
var float longTrail = na
var float shortTrail = na
var float longTakeProfitPrice = na
var float shortTakeProfitPrice = na
var float longHardStopLossPrice = na
var float shortHardStopLossPrice = na
// Hard Stop Loss and Take Profit calculation on entry
if longCondition or shortCondition
// Calculate Hard Stop Loss
if useHardStopLoss
if useAtrHardStopLoss
longHardStopLossPrice := close - (atrHardStopLossValue * atrHardStopLossMult)
shortHardStopLossPrice := close + (atrHardStopLossValue * atrHardStopLossMult)
else
longHardStopLossPrice := close * (1 - hardStopLossPercent)
shortHardStopLossPrice := close * (1 + hardStopLossPercent)
else
longHardStopLossPrice := na
shortHardStopLossPrice := na
// Calculate Take Profit
if useAtrTakeProfit
longTakeProfitPrice := close + (atrTakeProfitValue * atrTakeProfitMultiplier)
shortTakeProfitPrice := close - (atrTakeProfitValue * atrTakeProfitMultiplier)
else
longTakeProfitPrice := na
shortTakeProfitPrice := na
// Trailing Stop Logic - updated for each bar
if strategy.position_size > 0
// Calculate trailing stop
float tempTrail = na
if useTrailingStop
if close > strategy.position_avg_price * (1 + trailingStopActivationPercent)
tempTrail := close * (1 - trailingStopOffsetPercent)
if na(longTrail) or tempTrail > longTrail
longTrail := tempTrail
if useAtrTrailingStop
float atrTrail = close - (atrTrailingValue * atrTrailingStopMult)
if na(longTrail) or atrTrail > longTrail
longTrail := atrTrail
if strategy.position_size < 0
// Calculate trailing stop
float tempTrail = na
if useTrailingStop
if close < strategy.position_avg_price * (1 - trailingStopActivationPercent)
tempTrail := close * (1 + trailingStopOffsetPercent)
if na(shortTrail) or tempTrail < shortTrail
shortTrail := tempTrail
if useAtrTrailingStop
float atrTrail = close + (atrTrailingValue * atrTrailingStopMult)
if na(shortTrail) or atrTrail < shortTrail
shortTrail := atrTrail
// === Strategy Execution ===
if longCondition
strategy.entry("Long", strategy.long)
longTrail := na // Reset on new entry
shortTrail := na // Reset on new entry
if shortCondition
strategy.entry("Short", strategy.short)
shortTrail := na // Reset on new entry
longTrail := na // Reset on new entry
// Unified exit logic with proper ordering
if strategy.position_size > 0
// Define effective stop level (combining hard stop and trailing stop)
float effectiveStopLevel = na
if not na(longHardStopLossPrice) and useHardStopLoss
effectiveStopLevel := longHardStopLossPrice
if not na(longTrail) and (useTrailingStop or useAtrTrailingStop)
if na(effectiveStopLevel) or longTrail > effectiveStopLevel
effectiveStopLevel := longTrail
// Combined exit strategy with proper parameters
strategy.exit("Long Exit", "Long",
limit = useAtrTakeProfit ? longTakeProfitPrice : na,
stop = effectiveStopLevel)
if strategy.position_size < 0
// Define effective stop level (combining hard stop and trailing stop)
float effectiveStopLevel = na
if not na(shortHardStopLossPrice) and useHardStopLoss
effectiveStopLevel := shortHardStopLossPrice
if not na(shortTrail) and (useTrailingStop or useAtrTrailingStop)
if na(effectiveStopLevel) or shortTrail < effectiveStopLevel
effectiveStopLevel := shortTrail
// Combined exit strategy with proper parameters
strategy.exit("Short Exit", "Short",
limit = useAtrTakeProfit ? shortTakeProfitPrice : na,
stop = effectiveStopLevel)
// === Plotting ===
plotColorMa1 = nw_ma1 > nw_ma1[1] ? color.rgb(100, 250, 120) : color.rgb(255, 100, 120)
plotColorMa2 = nw_ma2 > nw_ma2[1] ? color.rgb(100, 250, 120) : color.rgb(255, 100, 120)
plotColorMa3 = nw_ma3 > nw_ma3[1] ? color.rgb(100, 250, 120) : color.rgb(255, 100, 120)
plotColorMa4 = nw_ma4 > nw_ma4[1] ? color.rgb(100, 250, 120) : color.rgb(255, 100, 120)
plotColorMa5 = nw_ma5 > nw_ma5[1] ? color.rgb(100, 250, 120) : color.rgb(255, 100, 120)
plot(nw_ma1, title="NW MA 1", color=plotColorMa1, linewidth=2)
plot(nw_ma2, title="NW MA 2", color=plotColorMa2, linewidth=2)
plot(nw_ma3, title="NW MA 3", color=plotColorMa3, linewidth=2)
plot(nw_ma4, title="NW MA 4", color=plotColorMa4, linewidth=2)
plot(nw_ma5, title="NW MA 5", color=plotColorMa5, linewidth=2)