인공신경망을 기반으로 한 양적 거래 전략


생성 날짜: 2023-11-14 11:22:28 마지막으로 수정됨: 2023-11-14 11:22:28
복사: 0 클릭수: 775
avatar of ChaoZhang ChaoZhang
1
집중하다
1617
수행원

인공신경망을 기반으로 한 양적 거래 전략

개요

이 전략은 인공신경망을 이용하여 미래의 가격변화를 예측하고, 예측 결과에 따라 거래 신호를 생성하는 트렌드 추적 전략에 속한다. 전략의 장점은 복잡한 비선형의 트렌드를 식별할 수 있다는 점이며, 중장선 거래에 적합하다. 하지만, 회귀 효과가 좋고, 실리드 효과가 좋지 않은 위험도 존재한다.

전략 원칙

이 전략은 인공신경망 (ANN) 을 사용하여 1일 후의 하락세를 예측한다.

입력 계층에는 지난 하루의 상승과 하락의 비율을 나타내는 하나의 입력 노드만 있습니다.

암시 계층은 2개의 계층으로 이루어져 있는데, 첫 번째 계층은 5개의 노드, 두 번째 계층은 33개의 노드이며, 모두 쌍곡 직사각형 ((tanh) 을 활성화 함수로 사용합니다.

출력 계층은 하나의 출력 노드만 있고, 선형 활성화 함수를 거쳐 최종 예측 결과로 직접 사용된다.

예측 결과가 threshold 변수 값보다 크면 구매 신호를 생성하고, threshold 변수 값보다 작으면 판매 신호를 생성한다.

전략적 이점

  • 복잡한 비선형적 추세에 맞게 ANN 모델을 사용하여 예측
  • 1일 데이터만 입력하고, 많은 히스토리 데이터를 필요로 하지 않습니다.
  • 더 긴 시간대에서 추세를 파악할 수 있습니다.
  • 여러 개의 암시된 계층을 사용하며, 잘 적응할 수 있습니다.
  • 활성화 함수와 매개 변수가 최적화되어 예측 효과가 향상되었습니다.

전략적 위험

  • ANN 알고리즘은 과합의 위험이 있으며, 현장 효과는 재검토보다 좋지 않을 수 있습니다.
  • 오랜 역사 자료가 필요하며, 최근 상장된 주식에는 적합하지 않습니다.
  • 매개 변수와 구조는 반복적으로 최적화해야 하며, 효과는 불안정하다.
  • 1일 하락을 예측하는 것만으로도 장기적인 추세를 파악할 수 없습니다.
  • 시장이 불안정해지면 효과가 나빠질 수 있습니다.

최적화 방향

  • 매출량과 같은 입력 변수를 추가합니다.
  • 다른 ANN 구조와 활성화 함수를 시도합니다.
  • ANN의 매개 변수를 최적화하여 일치 정확도를 향상시킵니다.
  • 트레이닝 세트 샘플을 늘리고, 과합을 피하십시오.
  • 여러 시차를 예측하여 장기, 단기 경향을 판단합니다.
  • combine with other models, ensemble learning
  • 변동률과 같은 지표들을 사용하여 위험 통제를 강화

요약하다

이 전략은 ANN 모델을 사용하여 가격 변화 예측을 수행하여 복잡한 비선형 트렌드를 식별할 수 있으며 중·장기 거래에 적합합니다. 그러나 ANN 모델의 블랙 박스 특성은 실장에도 큰 도전을 제공합니다. 우리는 입력 특성, 모델 구조, 변수 최적화, 앙상블 학습과 같은 측면에서 최적화를 수행해야하며, 전통적인 기술 분석 지표와 함께 운영 효과를 강화하고 실장 위험을 줄여야합니다. 인공 지능 전략은 여전히 전통적인 전략과 완벽하게 결합하여 최대 효과를 발휘해야합니다.

전략 소스 코드
/*backtest
start: 2023-10-14 00:00:00
end: 2023-11-13 00:00:00
period: 1h
basePeriod: 15m
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
*/

//@version=2
strategy("ANN Strategy v2")

threshold = input(title="Threshold", type=float, defval=0.0000, step=0.0001)
timeframe = input(title="Timeframe",  defval='1D' )

getDiff() =>
    yesterday=request.security(syminfo.tickerid, timeframe, ohlc4[1])
    today=ohlc4
    delta=today-yesterday
    percentage=delta/yesterday

PineActivationFunctionLinear(v) => v
PineActivationFunctionTanh(v) => (exp(v) - exp(-v))/(exp(v) + exp(-v))


l0_0 = PineActivationFunctionLinear(getDiff())

l1_0 = PineActivationFunctionTanh(l0_0*0.8446488687)
l1_1 = PineActivationFunctionTanh(l0_0*-0.5674069006)
l1_2 = PineActivationFunctionTanh(l0_0*0.8676766445)
l1_3 = PineActivationFunctionTanh(l0_0*0.5200611473)
l1_4 = PineActivationFunctionTanh(l0_0*-0.2215499554)

l2_0 = PineActivationFunctionTanh(l1_0*0.3341657935 + l1_1*-2.0060003664 + l1_2*0.8606354375 + l1_3*0.9184846912 + l1_4*-0.8531172267)
l2_1 = PineActivationFunctionTanh(l1_0*-0.0394076437 + l1_1*-0.4720374911 + l1_2*0.2900968524 + l1_3*1.0653326022 + l1_4*0.3000188806)
l2_2 = PineActivationFunctionTanh(l1_0*-0.559307785 + l1_1*-0.9353655177 + l1_2*1.2133832962 + l1_3*0.1952686024 + l1_4*0.8552068166)
l2_3 = PineActivationFunctionTanh(l1_0*-0.4293220754 + l1_1*0.8484259409 + l1_2*-0.7154087313 + l1_3*0.1102971055 + l1_4*0.2279392724)
l2_4 = PineActivationFunctionTanh(l1_0*0.9111779155 + l1_1*0.2801691115 + l1_2*0.0039982713 + l1_3*-0.5648257117 + l1_4*0.3281705155)
l2_5 = PineActivationFunctionTanh(l1_0*-0.2963954503 + l1_1*0.4046532178 + l1_2*0.2460580977 + l1_3*0.6608675819 + l1_4*-0.8732022547)
l2_6 = PineActivationFunctionTanh(l1_0*0.8810811932 + l1_1*0.6903706878 + l1_2*-0.5953059103 + l1_3*-0.3084040686 + l1_4*-0.4038498853)
l2_7 = PineActivationFunctionTanh(l1_0*-0.5687101164 + l1_1*0.2736758588 + l1_2*-0.2217360382 + l1_3*0.8742950972 + l1_4*0.2997583987)
l2_8 = PineActivationFunctionTanh(l1_0*0.0708459913 + l1_1*0.8221730616 + l1_2*-0.7213265567 + l1_3*-0.3810462836 + l1_4*0.0503867753)
l2_9 = PineActivationFunctionTanh(l1_0*0.4880140595 + l1_1*0.9466627196 + l1_2*1.0163097961 + l1_3*-0.9500386514 + l1_4*-0.6341709382)
l2_10 = PineActivationFunctionTanh(l1_0*1.3402207103 + l1_1*0.0013395288 + l1_2*3.4813009133 + l1_3*-0.8636814677 + l1_4*41.3171047132)
l2_11 = PineActivationFunctionTanh(l1_0*1.2388217292 + l1_1*-0.6520886912 + l1_2*0.3508321737 + l1_3*0.6640560714 + l1_4*1.5936220597)
l2_12 = PineActivationFunctionTanh(l1_0*-0.1800525171 + l1_1*-0.2620989752 + l1_2*0.056675277 + l1_3*-0.5045395315 + l1_4*0.2732553554)
l2_13 = PineActivationFunctionTanh(l1_0*-0.7776331454 + l1_1*0.1895231137 + l1_2*0.5384918862 + l1_3*0.093711904 + l1_4*-0.3725627758)
l2_14 = PineActivationFunctionTanh(l1_0*-0.3181583022 + l1_1*0.2467979854 + l1_2*0.4341718676 + l1_3*-0.7277619935 + l1_4*0.1799381758)
l2_15 = PineActivationFunctionTanh(l1_0*-0.5558227731 + l1_1*0.3666152536 + l1_2*0.1538243225 + l1_3*-0.8915928174 + l1_4*-0.7659355684)
l2_16 = PineActivationFunctionTanh(l1_0*0.6111516061 + l1_1*-0.5459495224 + l1_2*-0.5724238425 + l1_3*-0.8553500765 + l1_4*-0.8696190472)
l2_17 = PineActivationFunctionTanh(l1_0*0.6843667454 + l1_1*0.408652181 + l1_2*-0.8830470112 + l1_3*-0.8602324935 + l1_4*0.1135462621)
l2_18 = PineActivationFunctionTanh(l1_0*-0.1569048216 + l1_1*-1.4643247888 + l1_2*0.5557152813 + l1_3*1.0482791924 + l1_4*1.4523116833)
l2_19 = PineActivationFunctionTanh(l1_0*0.5207514017 + l1_1*-0.2734444192 + l1_2*-0.3328660936 + l1_3*-0.7941515963 + l1_4*-0.3536051491)
l2_20 = PineActivationFunctionTanh(l1_0*-0.4097807954 + l1_1*0.3198619826 + l1_2*0.461681627 + l1_3*-0.1135575498 + l1_4*0.7103339851)
l2_21 = PineActivationFunctionTanh(l1_0*-0.8725014237 + l1_1*-1.0312091401 + l1_2*0.2267643037 + l1_3*-0.6814258121 + l1_4*0.7524828703)
l2_22 = PineActivationFunctionTanh(l1_0*-0.3986855003 + l1_1*0.4962556631 + l1_2*-0.7330224516 + l1_3*0.7355772164 + l1_4*0.3180141739)
l2_23 = PineActivationFunctionTanh(l1_0*-1.083080442 + l1_1*1.8752543187 + l1_2*0.3623326265 + l1_3*-0.348145191 + l1_4*0.1977935038)
l2_24 = PineActivationFunctionTanh(l1_0*-0.0291290625 + l1_1*0.0612906199 + l1_2*0.1219696687 + l1_3*-1.0273685429 + l1_4*0.0872219768)
l2_25 = PineActivationFunctionTanh(l1_0*0.931791094 + l1_1*-0.313753684 + l1_2*-0.3028724837 + l1_3*0.7387076712 + l1_4*0.3806140391)
l2_26 = PineActivationFunctionTanh(l1_0*0.2630619402 + l1_1*-1.9827996702 + l1_2*-0.7741413496 + l1_3*0.1262957444 + l1_4*0.2248777886)
l2_27 = PineActivationFunctionTanh(l1_0*-0.2666322362 + l1_1*-1.124654664 + l1_2*0.7288282621 + l1_3*-0.1384289204 + l1_4*0.2395966188)
l2_28 = PineActivationFunctionTanh(l1_0*0.6611845175 + l1_1*0.0466048937 + l1_2*-0.1980999993 + l1_3*0.8152350927 + l1_4*0.0032723211)
l2_29 = PineActivationFunctionTanh(l1_0*-0.3150344751 + l1_1*0.1391754608 + l1_2*0.5462816249 + l1_3*-0.7952302364 + l1_4*-0.7520712378)
l2_30 = PineActivationFunctionTanh(l1_0*-0.0576916066 + l1_1*0.3678415302 + l1_2*0.6802537378 + l1_3*1.1437036331 + l1_4*-0.8637405666)
l2_31 = PineActivationFunctionTanh(l1_0*0.7016273068 + l1_1*0.3978601709 + l1_2*0.3157049654 + l1_3*-0.2528455662 + l1_4*-0.8614146703)
l2_32 = PineActivationFunctionTanh(l1_0*1.1741126834 + l1_1*-1.4046408959 + l1_2*1.2914477803 + l1_3*0.9904052964 + l1_4*-0.6980155826)

l3_0 = PineActivationFunctionTanh(l2_0*-0.1366382003 + l2_1*0.8161960822 + l2_2*-0.9458773183 + l2_3*0.4692969576 + l2_4*0.0126710629 + l2_5*-0.0403001012 + l2_6*-0.0116244898 + l2_7*-0.4874816289 + l2_8*-0.6392241448 + l2_9*-0.410338398 + l2_10*-0.1181027081 + l2_11*0.1075562037 + l2_12*-0.5948728252 + l2_13*0.5593677345 + l2_14*-0.3642935247 + l2_15*-0.2867603217 + l2_16*0.142250271 + l2_17*-0.0535698019 + l2_18*-0.034007685 + l2_19*-0.3594532426 + l2_20*0.2551095195 + l2_21*0.4214344983 + l2_22*0.8941621336 + l2_23*0.6283377368 + l2_24*-0.7138020667 + l2_25*-0.1426738249 + l2_26*0.172671223 + l2_27*0.0714824385 + l2_28*-0.3268182144 + l2_29*-0.0078989755 + l2_30*-0.2032828145 + l2_31*-0.0260631534 + l2_32*0.4918037012)

buying = l3_0 > 0 ? true : l3_0 < -0 ? false : buying[1]

hline(0, title="base line")
//bgcolor(l3_0 > 0.0014 ? green : l3_0 < -0.0014 ? red : gray, transp=20)
bgcolor(buying ? green : red, transp=20)
plot(l3_0, color=silver, style=area, transp=75)
plot(l3_0, color=aqua, title="prediction")

longCondition = buying
if (longCondition)
    strategy.entry("Long", strategy.long)

shortCondition = buying != true
if (shortCondition)
    strategy.entry("Short", strategy.short)