
이 전략은 런던과 미국 거래 시간에 가격 돌파 기회를 잡는 데 초점을 맞춘 고주파 수량 거래 시스템입니다. 그것은 사용자 정의 거래 시간 (Kill Zones), 동적 포지션 관리 및 정밀한 주문 관리를 통해 안정적인 거래 수익을 달성합니다. 전략의 핵심은 특정 시간 동안의 가격 행동을 분석하여 회귀 주기의 높고 낮은 데이터를 결합하여 완전한 거래 프레임 워크를 구축하는 것입니다.
이 전략은 다음과 같은 핵심 원칙에 따라 작동합니다.
이 전략은 시간, 가격, 포지션 등 여러 차원의 관리 방법을 통합하여 완전한 고주파 거래 시스템을 구축한다. 그것의 핵심 장점은 거래 시기를 정확하게 파악하고 완벽한 위험 관리 장치에 있습니다. 그러나 동시에 거래자는 시장 환경의 변화에 주의 깊게 관찰하고, 파라미터 설정을 제때 조정해야합니다.
/*backtest
start: 2019-12-23 08:00:00
end: 2024-12-10 08:00:00
period: 1d
basePeriod: 1d
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
*/
//@version=6
strategy("ENIGMA ENDGAME Strategy", overlay=true, margin_long=100, margin_short=100)
// Description:
// The ENIGMA ENDGAME strategy leverages price action breakouts within specific kill zones (London and US sessions) to capture profitable opportunities.
// The strategy uses dynamic position sizing based on account equity, precise entry logic via buy-stop and sell-stop orders, and robust risk management to achieve consistent profitability.
// Features include:
// - Customizable kill zones for session-specific trading.
// - Risk management with dynamic position sizing based on user-defined percentages.
// - Multiple entry opportunities with lookback-based high/low tracking.
// - Automatic pending order cancellation to avoid stale trades.
// - Adjustable risk-reward ratios for optimal profit-taking.
// Define customizable kill zones for London and US sessions
london_start_hour = input.int(2, minval=0, maxval=23, title="London Start Hour (UTC)")
london_end_hour = input.int(5, minval=0, maxval=23, title="London End Hour (UTC)")
us_start_hour = input.int(8, minval=0, maxval=23, title="US Start Hour (UTC)")
us_end_hour = input.int(11, minval=0, maxval=23, title="US End Hour (UTC)")
// Risk management parameters
risk_percentage = input.float(0.1, title="Risk Percentage per Trade (%)", step=0.01)
account_balance = strategy.equity
// Define lookback parameters
lookback_period = 3
cancel_after_bars = input.int(5, title="Cancel Pending Orders After Bars")
// User-defined risk-reward ratio
risk_reward_ratio = input.float(1.0, title="Risk-Reward Ratio", minval=0.1, step=0.1)
// Kill zone function
in_kill_zone = (hour(time) >= london_start_hour and hour(time) < london_end_hour) or (hour(time) >= us_start_hour and hour(time) < us_end_hour)
// Calculate Position Size Based on Risk
calc_position_size(entry_price, stop_loss) =>
// This function calculates the position size based on the account equity, risk percentage, and stop-loss distance.
risk = account_balance * (risk_percentage / 100)
stop_loss_distance = math.abs(entry_price - stop_loss)
// Validate stop-loss distance
stop_loss_distance := stop_loss_distance < syminfo.mintick * 10 ? syminfo.mintick * 10 : stop_loss_distance
position_size = risk / stop_loss_distance
// Clamp position size
math.min(position_size, 10000000000.0) // Limit to Pine Script max qty
// Initialize arrays to store high/low levels
var float[] buy_highs = array.new_float(0)
var float[] sell_lows = array.new_float(0)
var int[] pending_orders = array.new_int(0)
// Buy and Sell Arrow Conditions
bullish_arrow = close > open and close > high[1] and in_kill_zone // Triggers buy logic when price action breaks out in the upward direction within a kill zone.
bearish_arrow = close < open and close < low[1] and in_kill_zone // Triggers sell logic when price action breaks out in the downward direction within a kill zone.
// Store Highs and Place Buy-Stops
if bullish_arrow
array.clear(buy_highs) // Clears previous data to store new highs.
for i = 1 to lookback_period
array.push(buy_highs, high[i]) // Tracks highs from the lookback period.
// Place buy-stop orders
for high_level in buy_highs
stop_loss = low - syminfo.mintick * 10 // 1 pip below the low
take_profit = high_level + (high_level - stop_loss) * risk_reward_ratio // Calculate take-profit based on the risk-reward ratio.
strategy.entry("Buy", strategy.long, stop=high_level, qty=calc_position_size(high_level, stop_loss))
strategy.exit("Take Profit", "Buy", limit=take_profit, stop=stop_loss)
// Store Lows and Place Sell-Stops
if bearish_arrow
array.clear(sell_lows) // Clears previous data to store new lows.
for i = 1 to lookback_period
array.push(sell_lows, low[i]) // Tracks lows from the lookback period.
// Place sell-stop orders
for low_level in sell_lows
stop_loss = high + syminfo.mintick * 10 // 1 pip above the high
take_profit = low_level - (stop_loss - low_level) * risk_reward_ratio // Calculate take-profit based on the risk-reward ratio.
strategy.entry("Sell", strategy.short, stop=low_level, qty=calc_position_size(low_level, stop_loss))
strategy.exit("Take Profit", "Sell", limit=take_profit, stop=stop_loss)
// Cancel Pending Orders After Defined Bars
if array.size(pending_orders) > 0
for i = 0 to array.size(pending_orders) - 1
if bar_index - array.get(pending_orders, i) >= cancel_after_bars
array.remove(pending_orders, i) // Removes outdated pending orders.
// Alerts for debugging
alertcondition(bullish_arrow, title="Buy Alert", message="Buy signal generated.")
alertcondition(bearish_arrow, title="Sell Alert", message="Sell signal generated.")