
이 전략은 다중 주기 이동 평균과 거래량 분석을 결합한 트렌드 추적 시스템이다. 전략은 일계 주기의 EMA9, WMA20, WMA200 세 개의 평균선을 통해 전체적인 트렌드를 확인하고, OBV (On Balance Volume) 지표와 EMA를 도입하여 거래량을 확인하고, 보다 안정적인 트렌드 추적 거래를 실현한다.
이 전략은 두 가지 핵심 조건에 기반합니다.
이 전략은 다중 주기적 트렌드 분석과 거래량 확인을 결합하여 비교적 완전한 트렌드 추적 시스템을 구축한다. 전략의 논리는 명확하고, 위험 통제는 합리적이지만 여전히 최적화 할 여지가 있다. 거래자는 실제에서 신중하게 테스트하고, 특정 시장 특성에 따라 파라미터를 조정하는 것이 좋습니다.
/*backtest
start: 2024-09-01 00:00:00
end: 2025-02-18 08:00:00
period: 5d
basePeriod: 5d
exchanges: [{"eid":"Binance","currency":"BTC_USDT"}]
*/
//@version=6
strategy("Strategy: Daily MAs + OBV", overlay=true, initial_capital=10000, default_qty_type=strategy.percent_of_equity, default_qty_value=10, commission_type=strategy.commission.percent, commission_value=0.1)
//=== Daily Moving Averages Calculation =========================
// Get daily timeframe values using request.security.
dailyEMA9 = request.security(syminfo.tickerid, "D", ta.ema(close, 9))
dailyWMA20 = request.security(syminfo.tickerid, "D", ta.wma(close, 20))
dailyWMA200 = request.security(syminfo.tickerid, "D", ta.wma(close, 200))
// Check if each moving average is trending upward (current > previous).
ema9_up = dailyEMA9 > nz(dailyEMA9[1])
wma20_up = dailyWMA20 > nz(dailyWMA20[1])
wma200_up = dailyWMA200 > nz(dailyWMA200[1])
trend_condition = ema9_up and wma20_up and wma200_up
//=== OBV and its 13-period EMA Calculation ================================
// Calculate OBV manually using a cumulative sum.
obv_val = ta.cum(close > close[1] ? volume : (close < close[1] ? -volume : 0))
// 13-period EMA of the OBV.
ema13_obv = ta.ema(obv_val, 13)
// Condition: 13-period EMA of OBV must be above the OBV value.
obv_condition = ema13_obv > obv_val
//=== Entry Condition ===================================================
// Both trend and OBV conditions must be met.
buy_condition = trend_condition and obv_condition
//=== Entry and Exit Orders =============================================
// Enter a long position when the buy condition is met and no position is open.
if buy_condition and strategy.position_size <= 0
strategy.entry("Long", strategy.long)
// Exit the position when the condition is no longer met.
if not buy_condition and strategy.position_size > 0
strategy.close("Long")
//=== Explicit Entry and Exit Markers ====================================
// Determine the exact bar where entry and exit occur.
entry_signal = (strategy.position_size > 0 and (strategy.position_size[1] <= 0))
exit_signal = (strategy.position_size == 0 and (strategy.position_size[1] > 0))
plotshape(entry_signal, title="Entry Signal", location=location.belowbar, style=shape.labelup, text="BUY", color=color.new(color.green, 0), size=size.normal)
plotshape(exit_signal, title="Exit Signal", location=location.abovebar, style=shape.labeldown, text="SELL", color=color.new(color.red, 0), size=size.normal)
//=== Plots for Visualization ===============================================
// Plot daily moving averages.
plot(dailyEMA9, color=color.blue, title="Daily EMA 9")
plot(dailyWMA20, color=color.orange, title="Daily WMA 20")
plot(dailyWMA200, color=color.red, title="Daily WMA 200")
// Plot OBV and its 13-period EMA using color.new() to specify transparency.
plot(obv_val, color=color.new(color.gray, 30), title="OBV")
plot(ema13_obv, color=color.new(color.green, 0), title="13-Period EMA OBV")