
이 전략은 Nadaraya-Watson 핵 회귀를 기반으로 한 다차원 거래 시스템으로, 기술, 감정, 초감각 및 의지의 4 차원의 시장 정보를 통합하여 통합된 신호를 형성하여 거래 결정을 안내합니다. 전략은 무게 최적화 방법을 채택하여 다양한 차원의 신호를 가중 처리하고, 신호 품질을 높이기 위해 추세와 동력 필터를 결합합니다.
전략의 핵심은 Nadaraya-Watson 핵 회귀 방법을 통해 여러 차원의 시장 데이터를 부드럽게 처리하는 것입니다. 구체적으로:
이것은 수학적 방법과 거래의 지능을 결합하는 혁신적인 전략이다. 다차원 분석과 첨단 수학적 도구를 통해 전략은 시장의 여러 층을 포착하여 상대적으로 신뢰할 수있는 거래 신호를 제공합니다. 일부 최적화 공간이 있지만 전략의 전체적인 프레임 워크는 견고하고 실제 응용 가치가 있습니다.
/*backtest
start: 2025-02-17 00:00:00
end: 2025-02-19 00:00:00
period: 1m
basePeriod: 1m
exchanges: [{"eid":"Binance","currency":"ETH_USDT"}]
*/
//@version=5
strategy("Enhanced Multidimensional Integration Strategy with Nadaraya", overlay=true, initial_capital=10000, currency=currency.USD, default_qty_type=strategy.percent_of_equity, default_qty_value=10)
//────────────────────────────────────────────────────────────────────────────
// 1. Configuration and Weight Optimization Parameters
//────────────────────────────────────────────────────────────────────────────
// Weights can be optimized to favor dimensions with higher historical correlation.
// Base values are maintained but can be fine-tuned.
w_technical = input.float(0.4, "Technical Weight", step=0.05)
w_emotional = input.float(0.2, "Emotional Weight", step=0.05)
w_extrasensor = input.float(0.2, "Extrasensory Weight", step=0.05)
w_intentional = input.float(0.2, "Intentional Weight", step=0.05)
// Parameters for Nadaraya-Watson Smoothing Function:
// Smoothing period and bandwidth affect the "memory" and sensitivity of the signal.
smooth_length = input.int(20, "Smoothing Period", minval=5)
bw_param = input.float(20, "Bandwidth", minval=1, step=1)
//────────────────────────────────────────────────────────────────────────────
// 2. Risk Management Parameters
//────────────────────────────────────────────────────────────────────────────
// Incorporate stop-loss and take-profit in percentage to protect capital.
// These parameters can be optimized through historical testing.
stopLossPerc = input.float(1.5, "Stop Loss (%)", step=0.1) / 100 // 1.5% stop-loss
takeProfitPerc = input.float(3.0, "Take Profit (%)", step=0.1) / 100 // 3.0% take-profit
//────────────────────────────────────────────────────────────────────────────
// 3. Additional Filters (Trend and Momentum)
//────────────────────────────────────────────────────────────────────────────
// A long-term moving average is used to confirm the overall trend direction.
trend_length = input.int(200, "Trend MA Period", minval=50)
// RSI is used to confirm momentum. A level of 50 is common to distinguish bullish and bearish phases.
rsi_filter_level = input.int(50, "RSI Confirmation Level", minval=30, maxval=70)
//────────────────────────────────────────────────────────────────────────────
// 4. Definition of Dimensions
//────────────────────────────────────────────────────────────────────────────
tech_series = close
emotional_series = ta.rsi(close, 14) / 100
extrasensorial_series = ta.atr(14) / close
intentional_series = (close - ta.sma(close, 50)) / close
//────────────────────────────────────────────────────────────────────────────
// 5. Nadaraya-Watson Smoothing Function
//────────────────────────────────────────────────────────────────────────────
// This function smooths each dimension using a Gaussian kernel.
// Proper smoothing reduces noise and helps obtain a more robust signal.
nadaraya_smooth(_src, _len, _bw) =>
if bar_index < _len
na
else
float sumW = 0.0
float sumWY = 0.0
for i = 0 to _len - 1
weight = math.exp(-0.5 * math.pow(((_len - 1 - i) / _bw), 2))
sumW := sumW + weight
sumWY := sumWY + weight * _src[i]
sumWY / sumW
//────────────────────────────────────────────────────────────────────────────
// 6. Apply Smoothing to Each Dimension
//────────────────────────────────────────────────────────────────────────────
sm_tech = nadaraya_smooth(tech_series, smooth_length, bw_param)
sm_emotional = nadaraya_smooth(emotional_series, smooth_length, bw_param)
sm_extrasens = nadaraya_smooth(extrasensorial_series, smooth_length, bw_param)
sm_intentional = nadaraya_smooth(intentional_series, smooth_length, bw_param)
//────────────────────────────────────────────────────────────────────────────
// 7. Integration of Dimensions
//────────────────────────────────────────────────────────────────────────────
// The integrated signal is composed of the weighted sum of each smoothed dimension.
// This multidimensional approach seeks to capture different aspects of market behavior.
integrated_signal = (w_technical * sm_tech) + (w_emotional * sm_emotional) + (w_extrasensor * sm_extrasens) + (w_intentional * sm_intentional)
// Additional smoothing of the integrated signal to obtain a reference line.
sma_integrated = ta.sma(integrated_signal, 10)
//────────────────────────────────────────────────────────────────────────────
// 8. Additional Filters to Improve Accuracy and Win Rate
//────────────────────────────────────────────────────────────────────────────
// Trend filter: only trade in the direction of the overall trend, determined by a 200-period SMA.
trendMA = ta.sma(close, trend_length)
// Momentum filter: RSI is used to confirm the strength of the movement (RSI > 50 for long and RSI < 50 for short).
rsi_val = ta.rsi(close, 14)
longFilter = (close > trendMA) and (rsi_val > rsi_filter_level)
shortFilter = (close < trendMA) and (rsi_val < rsi_filter_level)
// Crossover signals of the integrated signal with its SMA reference.
rawLongSignal = ta.crossover(integrated_signal, sma_integrated)
rawShortSignal = ta.crossunder(integrated_signal, sma_integrated)
// Incorporate trend and momentum filters to filter false signals.
longSignal = rawLongSignal and longFilter
shortSignal = rawShortSignal and shortFilter
//────────────────────────────────────────────────────────────────────────────
// 9. Risk Management and Order Generation
//────────────────────────────────────────────────────────────────────────────
// Entries are made based on the filtered integrated signal.
if longSignal
strategy.entry("Long", strategy.long, comment="Long Entry")
if shortSignal
strategy.entry("Short", strategy.short, comment="Short Entry")
// Add automatic exits using stop-loss and take-profit to limit losses and secure profits.
// For long positions: stop-loss below entry price and take-profit above.
if strategy.position_size > 0
strategy.exit("Exit Long", "Long", stop = strategy.position_avg_price * (1 - stopLossPerc), limit = strategy.position_avg_price * (1 + takeProfitPerc))
// For short positions: stop-loss above entry price and take-profit below.
if strategy.position_size < 0
strategy.exit("Exit Short", "Short", stop = strategy.position_avg_price * (1 + stopLossPerc), limit = strategy.position_avg_price * (1 - takeProfitPerc))
//────────────────────────────────────────────────────────────────────────────
// 10. Visualization on the Chart
//────────────────────────────────────────────────────────────────────────────
plot(integrated_signal, color=color.blue, title="Integrated Signal", linewidth=2)
plot(sma_integrated, color=color.orange, title="SMA Integrated Signal", linewidth=2)
plot(trendMA, color=color.purple, title="Trend MA (200)", linewidth=1, style=plot.style_line)
plotshape(longSignal, title="Long Signal", location=location.belowbar, color=color.green, style=shape.labelup, text="LONG")
plotshape(shortSignal, title="Short Signal", location=location.abovebar, color=color.red, style=shape.labeldown, text="SHORT")