
이 전략은 변수 지수 동적 평균 ((VIDYA) 지표와 부린 밴드 ((Bollinger Bands) 를 결합한 트렌드 추적 시스템이며, 동시에 다단계 정지 메커니즘을 통합한다. 전통적인 트렌드 전략과 달리, 이 시스템은 더 적응적인 수익을 얻는 방법을 채택하고, 고유한 ATR 기준과 비율 목표를 통해 다단계 공백 위치를 구분한다. 이 전략의 혁신은 다단계 정지 방법을 채택하고, 특히 공백 거래에 대해 더 급진적인 비율 곱셈을 채택하고, 이러한 유연성은 시장의 변동성과 트렌드 강도에 따라 거래 관리 및 수익 분배를 최적화하는 데 도움이됩니다.
전략의 핵심은 빠른 속도와 느린 속도 두 가지의 VIDYA 지표를 사용하여 가격 추세를 분석하고 시장의 변동성을 고려하는 것입니다. VIDYA 지표의 계산 공식은 다음과 같습니다. 평형 인자 (α) = 2/ (周期+1) VIDYA (t) = α * k * 가격 (t) + (1 - α * k) * VIDYA (t-1) 여기서 k = 드 동력 진동기 (MO) 100
브린 밴드는 변동률 필터로 사용된다: 위 궤도 = MA + (K * 표준 차) 하단 궤도 = MA - (K * 표준 차)
입장 조건:
다층 차단 장치는 다음과 같습니다:
이 전략은 VIDYA 지표의 동적 적응성과 브린 밴드의 변동률 필터 기능을 결합하여 포괄적인 트렌드 추적 시스템을 만듭니다. 다층의 차단 메커니즘과 차별화된 다중공간 처리는 좋은 수익성과 위험 제어 능력을 갖춘다. 그러나 사용자는 시장 환경의 변화에 주의를 기울이고 적절한 변수를 조정하고 완벽한 자금 관리 시스템을 구축해야합니다.
/*backtest
start: 2025-01-01 00:00:00
end: 2025-09-08 08:00:00
period: 1d
basePeriod: 1d
exchanges: [{"eid":"Futures_Binance","currency":"ETH_USDT","balance":500000}]
*/
// This source code is subject to the terms of the Mozilla Public License 2.0 at https://mozilla.org/MPL/2.0/
// © PresentTrading
// This strategy, "VIDYA ProTrend Multi-Tier Profit," is a trend-following system that utilizes fast and slow VIDYA indicators
// to identify entry and exit points based on the direction and strength of the trend.
// It incorporates Bollinger Bands as a volatility filter and features a multi-step take profit mechanism,
// with adjustable ATR-based and percentage-based profit targets for both long and short positions.
// The strategy allows for more aggressive take profit settings for short trades, making it adaptable to varying market conditions.
//@version=5
strategy("VIDYA ProTrend Multi-Tier Profit", overlay=true)
// User-defined inputs
tradeDirection = input.string(title="Trading Direction", defval="Both", options=["Long", "Short", "Both"])
fastVidyaLength = input.int(10, title="Fast VIDYA Length", minval=1)
slowVidyaLength = input.int(30, title="Slow VIDYA Length", minval=1)
minSlopeThreshold = input.float(0.05, title="Minimum VIDYA Slope Threshold", step=0.01)
// Bollinger Bands Inputs
bbLength = input.int(20, title="Bollinger Bands Length", minval=1)
bbMultiplier = input.float(1.0, title="Bollinger Bands Multiplier", step=0.1)
// Multi-Step Take Profit Settings
group_tp = "Multi-Step Take Profit"
useMultiStepTP = input.bool(true, title="Enable Multi-Step Take Profit", group=group_tp)
tp_direction = input.string(title="Take Profit Direction", defval="Both", options=["Long", "Short", "Both"], group=group_tp)
atrLengthTP = input.int(14, title="ATR Length", group=group_tp)
// ATR-based Take Profit Steps
atrMultiplierTP1 = input.float(2.618, title="ATR Multiplier for TP 1", group=group_tp)
atrMultiplierTP2 = input.float(5.0, title="ATR Multiplier for TP 2", group=group_tp)
atrMultiplierTP3 = input.float(10.0, title="ATR Multiplier for TP 3", group=group_tp)
// Short Position Multiplier for Take Profit Percentages
shortTPPercentMultiplier = input.float(1.5, title="Short TP Percent Multiplier", group=group_tp)
// Percentage-based Take Profit Steps (Long)
tp_level_percent1 = input.float(title="Take Profit Level 1 (%)", defval=3.0, group=group_tp)
tp_level_percent2 = input.float(title="Take Profit Level 2 (%)", defval=8.0, group=group_tp)
tp_level_percent3 = input.float(title="Take Profit Level 3 (%)", defval=17.0, group=group_tp)
// Percentage-based Take Profit Allocation (Long)
tp_percent1 = input.float(title="Take Profit Percent 1 (%)", defval=12.0, group=group_tp)
tp_percent2 = input.float(title="Take Profit Percent 2 (%)", defval=8.0, group=group_tp)
tp_percent3 = input.float(title="Take Profit Percent 3 (%)", defval=10.0, group=group_tp)
// ATR-based Take Profit Percent Allocation (Long)
tp_percentATR1 = input.float(title="ATR TP Percent 1 (%)", defval=10.0, group=group_tp)
tp_percentATR2 = input.float(title="ATR TP Percent 2 (%)", defval=10.0, group=group_tp)
tp_percentATR3 = input.float(title="ATR TP Percent 3 (%)", defval=10.0, group=group_tp)
// Short position percentage allocations using the multiplier
tp_percent1_short = tp_percent1 * shortTPPercentMultiplier
tp_percent2_short = tp_percent2 * shortTPPercentMultiplier
tp_percent3_short = tp_percent3 * shortTPPercentMultiplier
tp_percentATR1_short = tp_percentATR1 * shortTPPercentMultiplier
tp_percentATR2_short = tp_percentATR2 * shortTPPercentMultiplier
tp_percentATR3_short = tp_percentATR3 * shortTPPercentMultiplier
// VIDYA Calculation Function
calcVIDYA(src, length) =>
alpha = 2 / (length + 1)
momm = ta.change(src)
m1 = momm >= 0.0 ? momm : 0.0
m2 = momm < 0.0 ? -momm : 0.0
sm1 = math.sum(m1, length)
sm2 = math.sum(m2, length)
chandeMO = nz(100 * (sm1 - sm2) / (sm1 + sm2))
k = math.abs(chandeMO) / 100
var float vidya = na
vidya := na(vidya[1]) ? src : (alpha * k * src + (1 - alpha * k) * vidya[1])
vidya
// Calculate VIDYAs
fastVIDYA = calcVIDYA(close, fastVidyaLength)
slowVIDYA = calcVIDYA(close, slowVidyaLength)
// Bollinger Bands Calculation
[bbUpper, bbBasis, bbLower] = ta.bb(close, bbLength, bbMultiplier)
// Manual Slope Calculation (price difference over time)
calcSlope(current, previous, length) =>
(current - previous) / length
// Slope of fast and slow VIDYA (comparing current value with value 'length' bars ago)
fastSlope = calcSlope(fastVIDYA, fastVIDYA[fastVidyaLength], fastVidyaLength)
slowSlope = calcSlope(slowVIDYA, slowVIDYA[slowVidyaLength], slowVidyaLength)
// Conditions for long entry with Bollinger Bands filter
longCondition = close > slowVIDYA and fastSlope > slowSlope and fastSlope > minSlopeThreshold and slowSlope > 1/2*minSlopeThreshold and close > bbUpper
// Conditions for short entry with Bollinger Bands filter
shortCondition = close < slowVIDYA and fastSlope < slowSlope and fastSlope < -minSlopeThreshold and slowSlope < -1/2*minSlopeThreshold and close < bbLower
// Exit conditions (opposite crossovers or flat slopes)
exitLongCondition = fastSlope < -minSlopeThreshold and slowSlope < -1/2*minSlopeThreshold or shortCondition
exitShortCondition = fastSlope > minSlopeThreshold and slowSlope > 1/2*minSlopeThreshold or longCondition
// Entry and Exit logic with trading direction
if (longCondition) and (strategy.position_size == 0) and (tradeDirection == "Long" or tradeDirection == "Both")
strategy.order("Long", strategy.long)
if (exitLongCondition) and strategy.position_size > 0 and (tradeDirection == "Long" or tradeDirection == "Both")
strategy.close("Long")
if (shortCondition) and (strategy.position_size == 0) and (tradeDirection == "Short" or tradeDirection == "Both")
strategy.order("Short", strategy.short)
if (exitShortCondition) and strategy.position_size < 0 and (tradeDirection == "Short" or tradeDirection == "Both")
strategy.close("Short")
if useMultiStepTP
if strategy.position_size > 0 and (tp_direction == "Long" or tp_direction == "Both")
// ATR-based Take Profit (Long)
tp_priceATR1_long = strategy.position_avg_price + atrMultiplierTP1 * ta.atr(atrLengthTP)
tp_priceATR2_long = strategy.position_avg_price + atrMultiplierTP2 * ta.atr(atrLengthTP)
tp_priceATR3_long = strategy.position_avg_price + atrMultiplierTP3 * ta.atr(atrLengthTP)
// Percentage-based Take Profit (Long)
tp_pricePercent1_long = strategy.position_avg_price * (1 + tp_level_percent1 / 100)
tp_pricePercent2_long = strategy.position_avg_price * (1 + tp_level_percent2 / 100)
tp_pricePercent3_long = strategy.position_avg_price * (1 + tp_level_percent3 / 100)
// Execute ATR-based exits for Long
strategy.exit("TP ATR 1 Long", from_entry="Long", qty_percent=tp_percentATR1, limit=tp_priceATR1_long)
strategy.exit("TP ATR 2 Long", from_entry="Long", qty_percent=tp_percentATR2, limit=tp_priceATR2_long)
strategy.exit("TP ATR 3 Long", from_entry="Long", qty_percent=tp_percentATR3, limit=tp_priceATR3_long)
// Execute Percentage-based exits for Long
strategy.exit("TP Percent 1 Long", from_entry="Long", qty_percent=tp_percent1, limit=tp_pricePercent1_long)
strategy.exit("TP Percent 2 Long", from_entry="Long", qty_percent=tp_percent2, limit=tp_pricePercent2_long)
strategy.exit("TP Percent 3 Long", from_entry="Long", qty_percent=tp_percent3, limit=tp_pricePercent3_long)
if strategy.position_size < 0 and (tp_direction == "Short" or tp_direction == "Both")
// ATR-based Take Profit (Short) - using the same ATR levels as long
tp_priceATR1_short = strategy.position_avg_price - atrMultiplierTP1 * ta.atr(atrLengthTP)
tp_priceATR2_short = strategy.position_avg_price - atrMultiplierTP2 * ta.atr(atrLengthTP)
tp_priceATR3_short = strategy.position_avg_price - atrMultiplierTP3 * ta.atr(atrLengthTP)
// Percentage-based Take Profit (Short) - using the same levels, but more aggressive percentages
tp_pricePercent1_short = strategy.position_avg_price * (1 - tp_level_percent1 / 100)
tp_pricePercent2_short = strategy.position_avg_price * (1 - tp_level_percent2 / 100)
tp_pricePercent3_short = strategy.position_avg_price * (1 - tp_level_percent3 / 100)
// Execute ATR-based exits for Short (using the percentage multiplier for short)
strategy.exit("TP ATR 1 Short", from_entry="Short", qty_percent=tp_percentATR1_short, limit=tp_priceATR1_short)
strategy.exit("TP ATR 2 Short", from_entry="Short", qty_percent=tp_percentATR2_short, limit=tp_priceATR2_short)
strategy.exit("TP ATR 3 Short", from_entry="Short", qty_percent=tp_percentATR3_short, limit=tp_priceATR3_short)
// Execute Percentage-based exits for Short
strategy.exit("TP Percent 1 Short", from_entry="Short", qty_percent=tp_percent1_short, limit=tp_pricePercent1_short)
strategy.exit("TP Percent 2 Short", from_entry="Short", qty_percent=tp_percent2_short, limit=tp_pricePercent2_short)
strategy.exit("TP Percent 3 Short", from_entry="Short", qty_percent=tp_percent3_short, limit=tp_pricePercent3_short)
// Plot VIDYAs
plot(fastVIDYA, color=color.green, title="Fast VIDYA")
plot(slowVIDYA, color=color.red, title="Slow VIDYA")