Strategi ini menggunakan penunjuk EMA yang berlagu sifar untuk membuat keputusan trend dan menghasilkan isyarat perdagangan. Penunjuk EMA ini dapat menyesuaikan parameter secara dinamik, dengan berkesan menghapuskan masalah ketinggalan.
Prinsip-prinsip strategi:
Mengira penunjuk EMA penyesuaian sifar, yang mengandungi dua algoritma penyesuaian sendiri, kaedah rantai dan kaedah I-Q.
EMA untuk EMA normal, EC untuk EMA adaptasi sifar lag.
Apabila EC di atas memakai EMA lebih banyak, EC di bawah memakai EMA kosong.
Hitung keluk kesilapan, set nilai penapis untuk isyarat palsu.
Tetapkan titik henti rugi tetap untuk mengunci keuntungan dan mengawal risiko.
Kelebihan strategi ini:
EMA beradaptasi dengan berkesan untuk mengurangkan ketinggalan dalam penunjuk.
Penapisan nilai terhad meningkatkan kualiti isyarat dan mengelakkan penembusan palsu.
Cara menghentikan kerosakan adalah mudah, praktikal dan mudah dioperasikan.
Risiko strategi ini:
Parameter EMA yang tidak stabil dan mungkin tidak berfungsi.
Penangguhan kerugian tetap sukar untuk menyesuaikan diri dengan perubahan pasaran.
Tiada had untuk kerugian tunggal, dan terdapat risiko yang lebih besar.
Ringkasnya, strategi ini menggunakan penyesuaian EMA untuk mengesan trend, yang dapat mengurangkan masalah ketinggalan ke tahap tertentu, tetapi perlu memberi perhatian kepada kestabilan parameter dan dilengkapi dengan mekanisme stop loss yang dioptimumkan untuk mengawal risiko.
/*backtest
start: 2023-09-05 00:00:00
end: 2023-09-12 00:00:00
period: 2h
basePeriod: 15m
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
*/
//@version=3
strategy(title="Adaptive Zero Lag EMA v2 (w/ Backtest Date Range)", shorttitle="AZLEMA", overlay = true, commission_type=strategy.commission.cash_per_contract, slippage = 5, pyramiding=1, calc_on_every_tick=true)
src = input(title="Source", defval=close)
secType = input(title="Security Type", options=["Forex", "Metal Spot", "Cryptocurrency","Custom"], defval="Forex")
contracts = input(title="Custom # of Contracts", defval=1, step=1)
limit = input(title="Max Lots", defval=100)
Period = input(title="Period", defval = 20)
adaptive = input(title="Adaptive Method", options=["Off", "Cos IFM", "I-Q IFM", "Average"], defval="Cos IFM")
GainLimit = input(title="Gain Limit", defval = 8)
Threshold = input(title="Threshold", defval=0.05, step=0.01)
fixedSL = input(title="SL Points", defval=70)
fixedTP = input(title="TP Points", defval=10)
risk = input(title='Risk', defval=0.01, step=0.01)
// === INPUT BACKTEST RANGE ===
FromMonth = input(defval = 1, title = "From Month", minval = 1, maxval = 12)
FromDay = input(defval = 1, title = "From Day", minval = 1, maxval = 31)
FromYear = input(defval = 2019, title = "From Year", minval = 2015)
ToMonth = input(defval = 1, title = "To Month", minval = 1, maxval = 12)
ToDay = input(defval = 1, title = "To Day", minval = 1, maxval = 31)
ToYear = input(defval = 9999, title = "To Year", minval = 2015)
// === FUNCTION EXAMPLE ===
start = timestamp(FromYear, FromMonth, FromDay, 00, 00) // backtest start window
finish = timestamp(ToYear, ToMonth, ToDay, 23, 59) // backtest finish window
window() => true
range = 50 //input(title="Max Period", defval=60, minval=8, maxval=100)
PI = 3.14159265359
lenIQ = 0.0
lenC = 0.0
//##############################################################################
//I-Q IFM
//##############################################################################
if(adaptive=="I-Q IFM" or adaptive=="Average")
imult = 0.635
qmult = 0.338
inphase = 0.0
quadrature = 0.0
re = 0.0
im = 0.0
deltaIQ = 0.0
instIQ = 0.0
V = 0.0
P = src - src[7]
inphase := 1.25*(P[4] - imult*P[2]) + imult*nz(inphase[3])
quadrature := P[2] - qmult*P + qmult*nz(quadrature[2])
re := 0.2*(inphase*inphase[1] + quadrature*quadrature[1]) + 0.8*nz(re[1])
im := 0.2*(inphase*quadrature[1] - inphase[1]*quadrature) + 0.8*nz(im[1])
if (re!= 0.0)
deltaIQ := atan(im/re)
for i=0 to range
V := V + deltaIQ[i]
if (V > 2*PI and instIQ == 0.0)
instIQ := i
if (instIQ == 0.0)
instIQ := nz(instIQ[1])
lenIQ := 0.25*instIQ + 0.75*nz(lenIQ[1])
//##############################################################################
//COSINE IFM
//##############################################################################
if(adaptive == "Cos IFM" or adaptive == "Average")
s2 = 0.0
s3 = 0.0
deltaC = 0.0
instC = 0.0
v1 = 0.0
v2 = 0.0
v4 = 0.0
v1 := src - src[7]
s2 := 0.2*(v1[1] + v1)*(v1[1] + v1) + 0.8*nz(s2[1])
s3 := 0.2*(v1[1] - v1)*(v1[1] - v1) + 0.8*nz(s3[1])
if (s2 != 0)
v2 := sqrt(s3/s2)
if (s3 != 0)
deltaC := 2*atan(v2)
for i = 0 to range
v4 := v4 + deltaC[i]
if (v4 > 2*PI and instC == 0.0)
instC := i - 1
if (instC == 0.0)
instC := instC[1]
lenC := 0.25*instC + 0.75*nz(lenC[1])
if (adaptive == "Cos IFM")
Period := round(lenC)
if (adaptive == "I-Q IFM")
Period := round(lenIQ)
if (adaptive == "Average")
Period := round((lenC + lenIQ)/2)
//##############################################################################
//ZERO LAG EXPONENTIAL MOVING AVERAGE
//##############################################################################
LeastError = 1000000.0
EC = 0.0
Gain = 0.0
EMA = 0.0
Error = 0.0
BestGain = 0.0
alpha =2/(Period + 1)
EMA := alpha*src + (1-alpha)*nz(EMA[1])
for i = -GainLimit to GainLimit
Gain := i/10
EC := alpha*(EMA + Gain*(src - nz(EC[1]))) + (1 - alpha)*nz(EC[1])
Error := src - EC
if(abs(Error)<LeastError)
LeastError := abs(Error)
BestGain := Gain
EC := alpha*(EMA + BestGain*(src - nz(EC[1]))) + (1-alpha)*nz(EC[1])
plot(EC, title="EC", color=orange, linewidth=2)
plot(EMA, title="EMA", color=red, linewidth=2)
//##############################################################################
//Trade Logic & Risk Management
//##############################################################################
buy = crossover(EC,EMA) and 100*LeastError/src > Threshold
sell = crossunder(EC,EMA) and 100*LeastError/src > Threshold
secScaler = secType == "Forex" ? 100000 : secType == "Metal Spot" ? 100 : secType == "Cryptocurrency" ? 10000 : secType == "Custom" ? contracts : 0
strategy.initial_capital = 50000
balance = strategy.initial_capital + strategy.netprofit
if (time>timestamp(2016, 1, 1 , 0, 0) and balance > 0)
//LONG
lots = ((risk * balance)/fixedSL)*secScaler
lots := lots > limit * secScaler ? limit * secScaler : lots
strategy.entry("BUY", strategy.long, oca_name="BUY", when=buy and window())
strategy.exit("B.Exit", "BUY", qty_percent = 100, loss=fixedSL, trail_offset=15, trail_points=fixedTP)
//SHORT
strategy.entry("SELL", strategy.short, oca_name="SELL",when=sell and window())
strategy.exit("S.Exit", "SELL", qty_percent = 100, loss=fixedSL, trail_offset=15, trail_points=fixedTP)