Strategi Pengoptimuman Purata Pergerakan Eksponen EMAC


Tarikh penciptaan: 2023-11-07 15:16:03 Akhirnya diubah suai: 2023-11-07 15:16:03
Salin: 0 Bilangan klik: 607
1
fokus pada
1617
Pengikut

Strategi Pengoptimuman Purata Pergerakan Eksponen EMAC

Gambaran keseluruhan

Strategi pengoptimuman silang rata-rata bergerak indeks EMAC adalah versi optimasi parameter dari strategi EMAC asas. Strategi ini menggabungkan penilaian trend, penapis garis rata ganda dan Exit Stop Loss, yang bertujuan untuk menangkap trend garis tengah dan panjang untuk mengikuti trend.

Prinsip Strategi

  1. Menentukan arah trend terkini: mengira kenaikan dan penurunan harga penutupan dalam tempoh 26 kitaran terakhir, menilai sebagai kenaikan, penurunan, goyah.

  2. Filter Garis Rata-Rata Berbilang: Mengira EMA 10 kitaran, 20 kitaran, 34 kitaran, dan menghasilkan isyarat beli apabila mereka melewati SMA 50 kitaran.

  3. Hentikan ATR: Apabila isyarat Entry muncul, titik hentikan ditetapkan sebagai titik rendah tiang Entry atau titik tinggi tolak 2.5 ATR.

  4. Hentikan bergerak: Hentikan bergerak ke atas secara beransur-ansur apabila harga meningkat.

  5. Hentikan sasaran: Apabila isyarat masuk muncul, setkan kedudukan sasaran kepada harga penutupan pada masa itu ditambah 3 ATR.

  6. MA Average Line Returns Stop Loss Exit: Aktiviti Stop Loss Exit apabila harga kembali menembusi 10 hari EMA.

Kelebihan Strategik

  1. Pelupusan saluran rata berbilang meningkatkan kebolehpercayaan isyarat dan mengelakkan penipuan palsu.

  2. Dengan menggunakan ATR Stop, anda boleh menetapkan jarak Stop yang munasabah berdasarkan turun naik pasaran.

  3. Hentian bergerak membolehkan garisan hentian bergerak ke atas secara beransur-ansur, melindungi sebahagian daripada keuntungan.

  4. Menetapkan matlamat yang munasabah, tidak tamak, dan mengelakkan mengeluarkan keuntungan.

  5. MA retrospeksi Exit membolehkan penangguhan kerugian dan penarikan diri tepat pada masanya apabila trend berbalik.

Risiko strategi dan penyelesaian

  1. Dalam keadaan yang bergolak, EMA rata-rata mudah membentuk beberapa kali persilangan, yang mungkin menimbulkan risiko kerugian berturut-turut. Anda boleh meningkatkan parameter EMA dengan sewajarnya, atau menambah syarat penapisan MA untuk mengurangkan kemungkinan ini.

  2. Apabila nilai ATR lebih besar, jarak berhenti terlalu besar dan risiko kerugian meningkat. Anda boleh mempertimbangkan untuk mengoptimumkan dengan menggunakan purata bergerak ATR atau dengan mengalikan ATR dengan faktor perbandingan pengurangan.

  3. Tidak mengambil kira risiko jarak malam. Logik penghakiman boleh dimasukkan ke dalam tempoh penutupan malam, untuk mengelakkan isyarat muncul pada waktu yang tidak boleh diperdagangkan.

  4. Tidak mengambil kira kesan keadaan pasaran besar. Keputusan mengenai trend pasaran besar boleh dimasukkan sebagai salah satu syarat kunci strategi untuk mengurangkan kerugian dalam keadaan pasaran besar yang tidak menguntungkan.

Arah pengoptimuman strategi

  1. Anda boleh menguji kombinasi parameter EMA dengan panjang yang berbeza untuk mencari panjang garis rata-rata yang lebih sesuai untuk pelbagai jenis.

  2. Anda boleh menguji ATR dengan purata bergerak atau pengurangan faktor untuk mengoptimumkan jarak henti.

  3. Logik penghakiman pada waktu penutupan malam boleh dimasukkan untuk mengelakkan risiko malam.

  4. Anda boleh masukkan penilaian mengenai keadaan pasaran besar, dan menetapkan syarat-syarat utama apabila trend pasaran besar tidak menguntungkan.

  5. Kombinasi parameter boleh dipilih dengan menguji data sejarah bertahun-tahun secara terbalik, supaya strategi mempunyai kestabilan yang optimum dalam pengujian semula.

ringkaskan

Strategi pengoptimuman silang rata-rata bergerak indeks EMAC menggabungkan penilaian trend, penapis garis rata-rata berganda dan stop loss dinamik, yang bertujuan untuk mengikuti trend garis tengah untuk memegang garis panjang. Berbanding dengan versi asal, pengoptimuman parameter telah dilakukan, yang diharapkan untuk mendapatkan prestasi yang lebih baik dalam pasaran. Tetapi strategi ini masih perlu dioptimumkan dan disempurnakan, menambah lebih banyak penilaian logik untuk menghadapi pelbagai keadaan pasaran, mengurangkan risiko dalam perdagangan sebenar, meningkatkan kestabilan strategi dan keuntungan.

Kod sumber strategi
/*backtest
start: 2023-10-01 00:00:00
end: 2023-10-31 23:59:59
period: 1d
basePeriod: 1h
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
*/

//@version=4
//Author = Dustin Drummond https://www.tradingview.com/u/Dustin_D_RLT/
//Strategy based in part on original 10ema Basic Swing Trade Strategy by Matt Delong: https://www.tradingview.com/u/MattDeLong/
//Link to original 10ema Basic Swing Trade Strategy: https://www.tradingview.com/script/8yhGnGCM-10ema-Basic-Swing-Trade-Strategy/
//This is the Original EMAC - Exponential Moving Average Cross Strategy built as a class for reallifetrading dot com and so has all the default settings and has not been optimized
//I would not recomend using this strategy with the default settings and is for educational purposes only
//For the fully optimized version please come back around the same time tomorrow 6/16/21 for the EMAC - Exponential Moving Average Cross - Optimized
//EMAC - Exponential Moving Average Cross
strategy(title="EMAC - Exponential Moving Average Cross", shorttitle = "EMAC", overlay = true, calc_on_every_tick=false, default_qty_value = 100, initial_capital = 100000, default_qty_type = strategy.fixed, pyramiding = 0, process_orders_on_close=true)
//creates a time filter to prevent "too many orders error" and allows user to see Strategy results per year by changing input in settings in Stratey Tester
startYear = input(2015, title="Start Year", minval=1980, step=1)
timeFilter = true
//R Size (Risk Amount)
rStaticOrPercent = input(title="R Static or Percent", defval="Percent", options=["Static", "Percent"])
rSizeStatic = input(2000, title="R Size Static", minval=1, step=100)
rSizePercent = input(3, title="R Size Percent", minval=.01, step=.01)
rSize = rStaticOrPercent == "Static" ? rSizeStatic : rStaticOrPercent == "Percent" ? (rSizePercent * .01 * strategy.equity) : 1
//Recent Trend Indicator "See the standalone version for detailed description"
res = input(title="Trend Timeframe", type=input.resolution, defval="W")
trend = input(26, minval=1, title="# of Bars for Trend")
trendMult = input(15, minval=0, title="Trend Growth %", step=.25) / 100
currentClose = security(syminfo.tickerid, res, close)
pastClose = security(syminfo.tickerid, res, close[trend])
//Trend Indicator
upTrend = (currentClose >= (pastClose * (1 + trendMult)))
downTrend = (currentClose <= (pastClose * (1 - trendMult)))
sidewaysUpTrend = (currentClose < (pastClose * (1 + trendMult)) and (currentClose > pastClose))
sidewaysDownTrend = (currentClose > (pastClose * (1 - trendMult)) and (currentClose < pastClose))
//Plot Trend on Chart
plotshape(upTrend, "Up Trend", style=shape.square, location=location.top, color=color.green, size=size.small)
plotshape(downTrend, "Down Trend", style=shape.square, location=location.top, color=color.red, size=size.small)
plotshape(sidewaysUpTrend, "Sideways Up Trend", style=shape.square, location=location.top, color=color.yellow, size=size.small)
plotshape(sidewaysDownTrend, "Sideways Down Trend", style=shape.square, location=location.top, color=color.orange, size=size.small)
//What trend signals to use in entrySignal
trendRequired = input(title="Trend Required", defval="Red", options=["Green", "Yellow", "Orange", "Red"])
goTrend = trendRequired == "Orange" ? upTrend or sidewaysUpTrend or sidewaysDownTrend : trendRequired == "Yellow" ? upTrend or sidewaysUpTrend : trendRequired == "Green" ? upTrend : trendRequired == "Red" ? upTrend or sidewaysUpTrend or sidewaysDownTrend or downTrend : na
//MAs Inputs Defalt is 10 EMA, 20 EMA, 50 EMA, 100 SMA and 200 SMA
ma1Length = input(10, title="MA1 Period", minval=1, step=1)
ma1Type = input(title="MA1 Type", defval="EMA", options=["SMA", "EMA", "WMA"])
ma2Length = input(20, title="MA2 Period", minval=1, step=1)
ma2Type = input(title="MA2 Type", defval="EMA", options=["SMA", "EMA", "WMA"])
ma3Length = input(34, title="MA3 Period", minval=1, step=1)
ma3Type = input(title="MA3 Type", defval="EMA", options=["SMA", "EMA", "WMA"])
ma4Length = input(100, title="MA4 Period", minval=1, step=1)
ma4Type = input(title="MA4 Type", defval="SMA", options=["SMA", "EMA", "WMA"])
ma5Length = input(200, title="MA5 Period", minval=1, step=1)
ma5Type = input(title="MA5 Type", defval="SMA", options=["SMA", "EMA", "WMA"])
//MAs defined
ma1 = ma1Type == "EMA" ? ema(close, ma1Length) : ma1Type == "SMA" ? sma(close, ma1Length) : wma(close, ma1Length)
ma2 = ma2Type == "EMA" ? ema(close, ma2Length) : ma2Type == "SMA" ? sma(close, ma2Length) : wma(close, ma2Length)
ma3 = ma3Type == "EMA" ? ema(close, ma3Length) : ma3Type == "SMA" ? sma(close, ma3Length) : wma(close, ma3Length)
ma4 = ma4Type == "SMA" ? sma(close, ma4Length) : ma4Type == "EMA" ? ema(close, ma4Length) : wma(close, ma4Length)
ma5 = ma5Type == "SMA" ? sma(close, ma5Length) : ma5Type == "EMA" ? ema(close, ma5Length) : wma(close, ma5Length)
//Plot MAs
plot(ma1, title="MA1", color=color.yellow, linewidth=1, style=plot.style_line)
plot(ma2, title="MA2", color=color.purple, linewidth=1, style=plot.style_line)
plot(ma3, title="MA3", color=#00FFFF, linewidth=1, style=plot.style_line)
plot(ma4, title="MA4", color=color.blue, linewidth=2, style=plot.style_line)
plot(ma5, title="MA5", color=color.orange, linewidth=2, style=plot.style_line)
//Allows user to toggle on/off ma1 > ma2 filter
enableShortMAs = input(title="Enable Short MA Cross Filter", defval="No", options=["Yes", "No"])
shortMACross = enableShortMAs == "Yes" and ma1 > ma2 or enableShortMAs == "No"
//Allows user to toggle on/off ma4 > ma5 filter
enableLongMAs = input(title="Enable Long MA Cross Filter", defval="No", options=["Yes", "No"])
longMACross = enableLongMAs == "Yes" and ma4 >= ma5 or enableLongMAs == "No"
//Entry Signals
entrySignal = (strategy.position_size <= 0 and close[1] < ma1[1] and close > ma1 and close > ma2 and close > ma3 and shortMACross and ma1 > ma3 and longMACross and goTrend)
secondSignal = (strategy.position_size > 0 and close[1] < ma1[1] and close > ma1 and close > ma2 and close > ma3 and shortMACross and ma1 > ma3 and longMACross and goTrend)
plotshape(entrySignal, style=shape.triangleup, location=location.belowbar, color=color.green, size=size.small)
plotshape(secondSignal, style=shape.triangleup, location=location.belowbar, color=color.lime, size=size.small)
//ATR for Stops
atrValue = (atr(14))
//to test ATR enable next line
//plot(atrValue, linewidth=1, color=color.black, style=plot.style_line)
atrMult = input(2.5, minval=.25, step=.25, title="Stop ATR Multiple")
//Only target3Mult is used in current strategy target1 and target2 might be used in the future with pyramiding
//target1Mult = input(1.0, minval=.25, step=.25, title="Targert 1 Multiple")
//target2Mult = input(2.0, minval=.25, step=.25, title="Targert 2 Multiple")
target3Mult = input(3.0, minval=.25, step=.25, title="Target Multiple")
enableAtrStop = input(title="Enable ATR Stops", defval="No", options=["Yes", "No"])
//Intitial Recomended Stop Location
atrStop = entrySignal and ((high - (atrMult * atrValue)) < low) ? (high - (atrMult * atrValue)) : low
//oneAtrStop is used for testing only enable next 2 lines to test
//oneAtrStop = entrySignal ? (high - atrValue) : na
//plot(oneAtrStop, "One ATR Stop", linewidth=2, color=color.orange, style=plot.style_linebr)
initialStop = entrySignal and enableAtrStop == "Yes" ? atrStop : entrySignal ? low : na
//Stops changed to stoploss to hold value for orders the next line is old code "bug"
//plot(initialStop, "Initial Stop", linewidth=2, color=color.red, style=plot.style_linebr)
//Set Initial Stop and hold value "debug code"
stoploss = valuewhen(entrySignal, initialStop, 0)
plot(stoploss, title="Stop", linewidth=2, color=color.red)
enableStops = input(title="Enable Stops", defval="No", options=["Yes", "No"])
yesStops = enableStops == "Yes" ? 1 : enableStops == "No" ? 0 : na
//Calculate size of trade based on R Size
//Original buggy code: 
//positionSize = (rSize/(close - initialStop))
//Added a minimum order size of 1 "debug code"
positionSize = (rSize/(close - initialStop)) > 1 ? (rSize/(close - initialStop)) : 1
//Targets
//Enable or Disable Targets
enableTargets = input(title="Enable Targets", defval="No", options=["Yes", "No"])
yesTargets = enableTargets == "Yes" ? 1 : enableTargets == "No" ? 0 : na
//Only target3 is used in current strategy target1 and target2 might be used in the future with pyramiding
//target1 = entrySignal ? (close + ((close - initialStop) * target1Mult)) : na
//target2 = entrySignal ? (close + ((close - initialStop) * target2Mult)) : na
target3 = entrySignal ? (close + ((close - initialStop) * target3Mult)) : na
//plot(target1, "Target 1", linewidth=2, color=color.green, style=plot.style_linebr)
//plot(target2, "Target 2", linewidth=2, color=color.green, style=plot.style_linebr)
plot(target3, "Target 3", linewidth=2, color=color.green, style=plot.style_linebr)
//Set Target and hold value "debug code"
t3 = valuewhen(entrySignal, target3, 0)
//To test t3 and see plot enable next line
//plot(t3, title="Target", linewidth=2, color=color.green)
//MA1 Cross Exit
enableEarlyExit = input(title="Enable Early Exit", defval="Yes", options=["Yes", "No"])
earlyExit = enableEarlyExit == "Yes" ? 1 : enableEarlyExit == "No" ? 0 : na
ma1CrossExit = strategy.position_size > 0 and close < ma1
//Entry Order
strategy.order("Entry", long = true, qty = positionSize, when = (strategy.position_size <= 0 and entrySignal and timeFilter))
//Early Exit Order
strategy.close_all(when = ma1CrossExit and timeFilter and earlyExit, comment = "MA1 Cross Exit")
//Stop and Target Orders
//strategy.cancel orders are needed to prevent bug with Early Exit Order
strategy.order("Stop Loss", false, qty = strategy.position_size, stop=stoploss, oca_name="Exit",  when = timeFilter and yesStops, comment = "Stop Loss")
strategy.cancel("Stop Loss", when = ma1CrossExit and timeFilter and earlyExit)
strategy.order("Target", false, qty = strategy.position_size, limit=t3, oca_name="Exit",  when = timeFilter and yesTargets, comment = "Target")
strategy.cancel("Target", when = ma1CrossExit and timeFilter and earlyExit)