
Strategi ini menggunakan indikator standard deviasi bertimbangan, digabungkan dengan purata bergerak, untuk mencapai perdagangan trend terhadap mata wang kripto. Strategi ini mengira saluran standard deviasi bertimbangan harga berdasarkan harga penutupan dan jumlah transaksi dalam tempoh tertentu.
Kod ini mentakrifkan dua fungsi tersuai yang berbeza dengan standard berat dari siri masa dan pengiraan array. Langkah-langkah utama adalah:
Dengan cara ini, kita mendapat saluran yang mempunyai pusat pada harga purata bertimbangan dan jarak ke atas ke bawah adalah satu perbezaan piawai. Apabila harga dari bawah menembusi bahagian bawah saluran itu, lakukan lebih banyak; apabila dari atas menembusi bahagian atas saluran itu, lakukan kosong.
Kelebihan terbesar strategi ini adalah menggabungkan purata bergerak dan analisis kadar turun naik. Purata bergerak menentukan arah trend pasaran, perbezaan piawai menentukan julat yang munasabah, kedua-duanya saling disahkan, kebolehpercayaan yang tinggi. Selain itu, berat dagangan boleh menapis penipuan palsu, kemungkinan sebenar lebih besar.
Strategi ini juga menetapkan titik hentian kerugian, yang berguna untuk memahami trend dan mengelakkan pembalikan menyebabkan kerugian yang berlebihan. Ini adalah perkara yang tidak dapat dikuasai oleh banyak pemula.
Risiko utama adalah bahawa pasaran mungkin mengalami turun naik yang teruk. Pada masa ini, jurang standard deviasi juga akan turun naik secara besar-besaran, yang tidak baik untuk membuat keputusan. Selain itu, jika kitaran pemilihan terlalu pendek, mudah terganggu oleh bunyi bising, kadar kesilapan yang tinggi.
Penyelesaian adalah, parameter kitaran boleh disesuaikan dengan sewajarnya, kelancaran keluk. Ia juga boleh dipertimbangkan untuk menggabungkan dengan penunjuk lain, seperti RSI, untuk meningkatkan kesan pengesahan pecah.
Strategi ini berjaya menggunakan indikator standard deviasi bertimbangan, dibantu dengan penilaian arah dengan purata bergerak, untuk mengesan trend mata wang kripto. Pada masa yang sama, penyetempatan stop loss yang munasabah membantu memahami irama pasaran dan mengelakkan perubahan yang berlebihan yang membawa kerugian.
/*backtest
start: 2023-11-16 00:00:00
end: 2023-11-23 00:00:00
period: 45m
basePeriod: 5m
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
*/
// This source code is subject to the terms of the Mozilla Public License 2.0 at https://mozilla.org/MPL/2.0/
// © rumpypumpydumpy © cache_that_pass
//@version=4
strategy("[cache_that_pass] 1m 15m Function - Weighted Standard Deviation", overlay=true, pyramiding=0, default_qty_type=strategy.percent_of_equity, default_qty_value=20, initial_capital=10000, commission_type=strategy.commission.percent, commission_value=0.075)
f_weighted_sd_from_series(_src, _weight, _n) => //{
// @function: Calculates weighted mean, variance, standard deviation, MSE and RMSE from time series variables
// @parameters:
// _src: time series variable of sample values
// _weight: time series of corresponding weight values.
// _n : number of samples
_xw = _src * _weight
_sum_weight = sum(_weight, _n)
_mean = sum(_xw, _n) / _sum_weight
float _sqerror_sum = 0
int _nonzero_n = 0
for _i = 0 to _n - 1
_sqerror_sum := _sqerror_sum + pow(_mean - _src[_i], 2) * _weight[_i]
_nonzero_n := _weight[_i] != 0 ? _nonzero_n + 1 : _nonzero_n
_variance = _sqerror_sum / ((_nonzero_n - 1) * _sum_weight / _nonzero_n)
_dev = sqrt(_variance)
_mse = _sqerror_sum / _sum_weight
_rmse = sqrt(_mse)
[_mean, _variance, _dev, _mse, _rmse]
//}
// -----------------------------------------------------------------------------
f_weighted_sd_from_arrays(_a_src, _a_weight, _n) => //{
// @function: Calculates weighted mean, variance, standard deviation, MSE and RMSE from arrays
// Expects index 0 of the arrays to be the most recent sample and weight values!
// @parameters:
// _a_src: array of sample values
// _a_weight: array of corresponding weight values.
// _n : number of samples
float _mean = na, float _variance = na, float _dev = na, float _mse = na
float _rmse = na, float _sqerror_sum = na, float _sum_weight = na
float[] _a_xw = array.new_float(_n)
int _nonzero_n = 0
if array.size(_a_src) >= _n
_sum_weight := 0
_sqerror_sum := 0
for _i = 0 to _n - 1
array.set(_a_xw, _i, array.get(_a_src, _i) * array.get(_a_weight, _i))
_sum_weight := _sum_weight + array.get(_a_weight, _i)
_nonzero_n := array.get(_a_weight, _i) != 0 ? _nonzero_n + 1 : _nonzero_n
_mean := array.sum(_a_xw) / _sum_weight
for _j = 0 to _n - 1
_sqerror_sum := _sqerror_sum + pow(_mean - array.get(_a_src, _j), 2) * array.get(_a_weight, _j)
_variance := _sqerror_sum / ((_nonzero_n - 1) * _sum_weight / _nonzero_n)
_dev := sqrt(_variance)
_mse := _sqerror_sum / _sum_weight
_rmse := sqrt(_mse)
[_mean, _variance, _dev, _mse, _rmse]
//}
// -----------------------------------------------------------------------------
// Example usage :
// -----------------------------------------------------------------------------
len = input(20)
// -----------------------------------------------------------------------------
// From series :
// -----------------------------------------------------------------------------
[m, v, d, mse, rmse] = f_weighted_sd_from_series(close, volume, len)
plot(m, color = color.blue)
plot(m + d * 2, color = color.blue)
plot(m - d * 2, color = color.blue)
// -----------------------------------------------------------------------------
// -----------------------------------------------------------------------------
// From arrays :
// -----------------------------------------------------------------------------
var float[] a_src = array.new_float()
var float[] a_weight = array.new_float()
if barstate.isfirst
for i = 1 to len
array.unshift(a_weight, i)
array.unshift(a_src, close)
if array.size(a_src) > len
array.pop(a_src)
[a_m, a_v, a_d, a_mse, a_rmse] = f_weighted_sd_from_arrays(a_src, a_weight, len)
plot(a_m, color = color.orange)
plot(a_m + a_d * 2, color = color.orange)
plot(a_m - a_d * 2, color = color.orange)
// -----------------------------------------------------------------------------
series_text = "Mean : " + tostring(m) + "\nVariance : " + tostring(v) + "\nSD : " + tostring(d) + "\nMSE : " + tostring(mse) + "\nRMSE : " + tostring(rmse)
array_text = "Mean : " + tostring(a_m) + "\nVariance : " + tostring(a_v) + "\nSD : " + tostring(a_d) + "\nMSE : " + tostring(a_mse) + "\nRMSE : " + tostring(a_rmse)
debug_text = "Volume weighted from time series : \n" + series_text + "\n\nLinearly weighted from arrays : \n" + array_text
//debug = label.new(x = bar_index, y = close, text = debug_text, style = label.style_label_left)
//.delete(debug[1])
//test strategy
if low <= (m - d * 2)
strategy.entry("LE", strategy.long)
if high >= (m + d * 2)
strategy.entry("SE", strategy.short)
// User Options to Change Inputs (%)
stopPer = input(3.11, title='Stop Loss %', type=input.float) / 100
takePer = input(7.50, title='Take Profit %', type=input.float) / 100
// Determine where you've entered and in what direction
longStop = strategy.position_avg_price * (1 - stopPer)
shortStop = strategy.position_avg_price * (1 + stopPer)
shortTake = strategy.position_avg_price * (1 - takePer)
longTake = strategy.position_avg_price * (1 + takePer)
if strategy.position_size > 0
strategy.exit(id="Close Long", stop=longStop, limit=longTake)
// strategy.close("LE", when = (longStop) or (longTake), qty_percent = 100)
if strategy.position_size < 0
strategy.exit(id="Close Short", stop=shortStop, limit=shortTake)
// strategy.close("SE", when = (shortStop) or (shortTake), qty_percent = 100)