
Nama strategi: Strategi MACD linear yang didorong oleh momentum
Ringkasan: Ini adalah strategi kuantitatif yang menggunakan kemerosotan linear untuk meramalkan harga saham dan digabungkan dengan penunjuk MACD. Ia menggunakan kemerosotan linear untuk menganalisis harga sejarah dan jumlah transaksi untuk meramalkan trend harga masa depan.
Prinsip-prinsip strategi:
Analisis kelebihan: Ini adalah strategi yang menggabungkan ramalan statistik dan penilaian penunjuk teknikal. Ia menggunakan kemerosotan linear untuk membuat ramalan harga, mengelakkan spekulasi subjektif. Pada masa yang sama, penunjuk MACD dapat menentukan arah jual beli pasaran dengan berkesan, menangkap peluang dengan tepat. Secara keseluruhan, ini adalah strategi yang sangat sistematik, ramalan yang tepat, dan risiko yang boleh dikawal.
Analisis risiko: Regresen linear hanya bergantung pada data sejarah, tidak sensitif terhadap kejadian mengejut seperti berita keuntungan dan kerugian besar, dan mungkin menghasilkan isyarat yang salah. Selain itu, tetapan parameter seperti panjang kitaran pengembalian, dan sebagainya, juga akan mempengaruhi prestasi strategi. Kami mencadangkan penggunaan harga ramalan ratavwma untuk mengurangkan kesan pergerakan kurva pada strategi.
Arah untuk dioptimumkan: Kami berpendapat bahawa strategi ini boleh dioptimumkan dalam beberapa aspek:
Kesimpulannya: Strategi ini membentuk strategi perdagangan kuantitatif yang sistematik melalui penilaian harga ramalan regresi linear dengan indikator MACD. Ia mempunyai kelebihan seperti kejernihan logik ramalan, kawalan risiko, ruang optimasi yang luas. Kami percaya bahawa dengan pengoptimuman dan pengulangan berterusan, prestasinya akan menjadi lebih baik.
/*backtest
start: 2023-12-07 00:00:00
end: 2023-12-14 00:00:00
period: 1m
basePeriod: 1m
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
*/
// This source code is subject to the terms of the Mozilla Public License 2.0 at https://mozilla.org/MPL/2.0/
// © stocktechbot
//@version=5
strategy("Linear On MACD", overlay=true, margin_long=100, margin_short=100)
fast_length = input(title="Fast Length", defval=12)
slow_length = input(title="Slow Length", defval=26)
tolerance = input.string(title="Risk tolerance", defval = "LOW", options=["LOW", "HIGH"])
chng = 0
obv = ta.cum(math.sign(ta.change(close)) * volume)
if close < close[1] and (open < close)
chng := 1
else if close > close[1]
chng := 1
else
chng := -1
obvalt = ta.cum(math.sign(chng) * volume)
//src = input(title="Source", defval=close)
src = obvalt
signal_length = input.int(title="Signal Smoothing", minval = 1, maxval = 50, defval = 9)
sma_source = input.string(title="Oscillator MA Type", defval="EMA", options=["SMA", "EMA"])
sma_signal = input.string(title="Signal Line MA Type", defval="EMA", options=["SMA", "EMA"])
// Calculating
fast_ma = sma_source == "SMA" ? ta.sma(src, fast_length) : ta.ema(src, fast_length)
slow_ma = sma_source == "SMA" ? ta.sma(src, slow_length) : ta.ema(src, slow_length)
macd = fast_ma - slow_ma
signal = sma_signal == "SMA" ? ta.sma(macd, signal_length) : ta.ema(macd, signal_length)
hist = macd - signal
//hline(0, "Zero Line", color=color.new(#787B86, 50))
//plot(hist, title="Histogram", style=plot.style_columns, color=(hist>=0 ? (hist[1] < hist ? col_grow_above : col_fall_above) : (hist[1] < hist ? col_grow_below : col_fall_below)))
//plot(macd, title="MACD", color=col_macd)
//plot(signal, title="Signal", color=col_signal)
[macdLine, signalLine, histLine] = ta.macd(close, 12, 26, 9)
//Linear Regression
vol = volume
// Function to calculate linear regression
linregs(y, x, len) =>
ybar = math.sum(y, len)/len
xbar = math.sum(x, len)/len
b = math.sum((x - xbar)*(y - ybar),len)/math.sum((x - xbar)*(x - xbar),len)
a = ybar - b*xbar
[a, b]
// Historical stock price data
price = close
// Length of linear regression
len = input(defval = 21, title = 'Lookback')
// Calculate linear regression for stock price based on volume
[a, b] = linregs(price, vol, len)
// Predicted stock price based on volume
predicted_price = a + b*vol
// Check if predicted price is between open and close
is_between = open < predicted_price and predicted_price < close
// Plot predicted stock price
plot(predicted_price, color=color.rgb(218, 27, 132), linewidth=2, title="Predicted Stock Price")
plot(ta.vwma(predicted_price,len), color=color.rgb(199, 43, 64), linewidth=2, title="Predicted Stock Price")
//BUY Signal
lincrossunder = close > predicted_price
macdrise = ta.rising(macd,2)
//macdvollong = ta.crossover(macd, signal)
//macdlong = ta.crossover(macdLine, signalLine)
macdvollong = macd > signal
macdlong = macdLine > signalLine
longCondition=false
if macdlong and macdvollong and is_between and ta.rising(predicted_price,1)
longCondition := true
if (longCondition)
strategy.entry("My Long Entry Id", strategy.long)
//Sell Signal
lincrossover = close < predicted_price
macdfall = ta.falling(macd,1)
macdsell = macd < signal
shortCondition = false
risklevel = predicted_price
if (tolerance == "HIGH")
risklevel := ta.vwma(predicted_price,len)
if macdfall and macdsell and (macdLine < signalLine) and (close < risklevel)
shortCondition := true
if (shortCondition)
strategy.entry("My Short Entry Id", strategy.short)