
Strategi ini adalah sistem perdagangan komprehensif yang menggabungkan penapis Gaussian Channel dan RSI acak. Peluang perdagangan ditentukan melalui perubahan arah dan kedudukan harga Gaussian Channel, yang digabungkan dengan isyarat overbought dan oversold RSI acak. Strategi ini menggunakan model matematik yang rumit untuk membina saluran penyesuaian yang dapat menyaring kebisingan pasaran dengan berkesan dan menangkap perubahan harga yang penting.
Logik teras strategi adalah berdasarkan komponen utama berikut:
Strategi ini membina sistem perdagangan yang mempunyai daya serasi yang kuat dengan menggabungkan penapis Gaussian Channel dan RSI acak. Dasar matematik Gaussian Channel menjamin kehalusan dan kebolehpercayaan isyarat, manakala gabungan RSI acak meningkatkan lagi ketepatan masa masuk. Kelebihan utama strategi ini adalah penapisan bunyi pasaran yang berkesan dan pengendalian trend yang tepat, tetapi juga memerlukan perhatian terhadap masalah pengoptimuman berangka dan pengurusan risiko.
/*backtest
start: 2024-02-22 00:00:00
end: 2025-02-19 08:00:00
period: 1d
basePeriod: 1d
exchanges: [{"eid":"Binance","currency":"SOL_USDT"}]
*/
//@version=5
strategy(title="Gaussian Channel Strategy v3.0", overlay=true, calc_on_every_tick=false, initial_capital=1000, default_qty_type=strategy.percent_of_equity, default_qty_value=100, commission_type=strategy.commission.percent, commission_value=0.1, slippage=0, fill_orders_on_standard_ohlc=true)
//-----------------------------------------------------------------------------------------------------------------------------------------------------------------
// Gaussian Filter Functions (Must be declared first)
//-----------------------------------------------------------------------------------------------------------------------------------------------------------------
f_filt9x(_a, _s, _i) =>
var int _m2 = 0, var int _m3 = 0, var int _m4 = 0, var int _m5 = 0, var int _m6 = 0,
var int _m7 = 0, var int _m8 = 0, var int _m9 = 0, var float _f = .0
_x = 1 - _a
_m2 := _i == 9 ? 36 : _i == 8 ? 28 : _i == 7 ? 21 : _i == 6 ? 15 : _i == 5 ? 10 : _i == 4 ? 6 : _i == 3 ? 3 : _i == 2 ? 1 : 0
_m3 := _i == 9 ? 84 : _i == 8 ? 56 : _i == 7 ? 35 : _i == 6 ? 20 : _i == 5 ? 10 : _i == 4 ? 4 : _i == 3 ? 1 : 0
_m4 := _i == 9 ? 126 : _i == 8 ? 70 : _i == 7 ? 35 : _i == 6 ? 15 : _i == 5 ? 5 : _i == 4 ? 1 : 0
_m5 := _i == 9 ? 126 : _i == 8 ? 56 : _i == 7 ? 21 : _i == 6 ? 6 : _i == 5 ? 1 : 0
_m6 := _i == 9 ? 84 : _i == 8 ? 28 : _i == 7 ? 7 : _i == 6 ? 1 : 0
_m7 := _i == 9 ? 36 : _i == 8 ? 8 : _i == 7 ? 1 : 0
_m8 := _i == 9 ? 9 : _i == 8 ? 1 : 0
_m9 := _i == 9 ? 1 : 0
_f := math.pow(_a, _i) * nz(_s) + _i * _x * nz(_f[1]) - (_i >= 2 ? _m2 * math.pow(_x, 2) * nz(_f[2]) : 0) + (_i >= 3 ? _m3 * math.pow(_x, 3) * nz(_f[3]) : 0) - (_i >= 4 ? _m4 * math.pow(_x, 4) * nz(_f[4]) : 0) + (_i >= 5 ? _m5 * math.pow(_x, 5) * nz(_f[5]) : 0) - (_i >= 6 ? _m6 * math.pow(_x, 6) * nz(_f[6]) : 0) + (_i >= 7 ? _m7 * math.pow(_x, 7) * nz(_f[7]) : 0) - (_i >= 8 ? _m8 * math.pow(_x, 8) * nz(_f[8]) : 0) + (_i == 9 ? _m9 * math.pow(_x, 9) * nz(_f[9]) : 0)
f_pole(_a, _s, _i) =>
_f1 = f_filt9x(_a, _s, 1)
_f2 = _i >= 2 ? f_filt9x(_a, _s, 2) : 0.0
_f3 = _i >= 3 ? f_filt9x(_a, _s, 3) : 0.0
_f4 = _i >= 4 ? f_filt9x(_a, _s, 4) : 0.0
_f5 = _i >= 5 ? f_filt9x(_a, _s, 5) : 0.0
_f6 = _i >= 6 ? f_filt9x(_a, _s, 6) : 0.0
_f7 = _i >= 7 ? f_filt9x(_a, _s, 7) : 0.0
_f8 = _i >= 8 ? f_filt9x(_a, _s, 8) : 0.0
_f9 = _i == 9 ? f_filt9x(_a, _s, 9) : 0.0
_fn = _i == 1 ? _f1 : _i == 2 ? _f2 : _i == 3 ? _f3 : _i == 4 ? _f4 : _i == 5 ? _f5 : _i == 6 ? _f6 : _i == 7 ? _f7 : _i == 8 ? _f8 : _i == 9 ? _f9 : na
[_fn, _f1]
//-----------------------------------------------------------------------------------------------------------------------------------------------------------------
// Inputs
//-----------------------------------------------------------------------------------------------------------------------------------------------------------------
// Gaussian Channel
int poles = input.int(4, "Poles", 1, 9, group="Gaussian Channel")
int period = input.int(144, "Sampling Period", 2, group="Gaussian Channel")
float mult = input.float(1.414, "True Range Multiplier", group="Gaussian Channel")
bool reducedLag = input.bool(false, "Reduced Lag Mode", group="Gaussian Channel")
bool fastResponse = input.bool(false, "Fast Response Mode", group="Gaussian Channel")
// Stochastic RSI
smoothK = input.int(3, "K", 1, group="Stochastic RSI")
smoothD = input.int(3, "D", 1, group="Stochastic RSI")
lengthRSI = input.int(14, "RSI Length", 1, group="Stochastic RSI")
lengthStoch = input.int(14, "Stochastic Length", 1, group="Stochastic RSI")
//-----------------------------------------------------------------------------------------------------------------------------------------------------------------
// Calculations
//-----------------------------------------------------------------------------------------------------------------------------------------------------------------
// Gaussian Channel
beta = (1 - math.cos(4*math.asin(1)/period)) / (math.pow(1.414, 2/poles) - 1)
alpha = -beta + math.sqrt(math.pow(beta, 2) + 2*beta)
lag = (period - 1)/(2*poles)
src = hlc3
srcData = reducedLag ? src + (src - src[lag]) : src
trData = reducedLag ? ta.tr + (ta.tr - ta.tr[lag]) : ta.tr
[filterMain, filter1] = f_pole(alpha, srcData, poles)
[filterTRMain, filterTR1] = f_pole(alpha, trData, poles)
finalFilter = fastResponse ? (filterMain + filter1)/2 : filterMain
finalTR = fastResponse ? (filterTRMain + filterTR1)/2 : filterTRMain
hband = finalFilter + finalTR * mult
lband = finalFilter - finalTR * mult
// Stochastic RSI
rsi = ta.rsi(close, lengthRSI)
k = ta.sma(ta.stoch(rsi, rsi, rsi, lengthStoch), smoothK)
d = ta.sma(k, smoothD)
//-----------------------------------------------------------------------------------------------------------------------------------------------------------------
// Trading Logic
//-----------------------------------------------------------------------------------------------------------------------------------------------------------------
gaussianGreen = finalFilter > finalFilter[1]
priceAbove = close > hband
stochCondition = k > 80 or k < 20
longCondition = gaussianGreen and priceAbove and stochCondition
exitCondition = ta.crossunder(close, hband)
strategy.entry("Long", strategy.long, when=longCondition)
strategy.close("Long", when=exitCondition)
//-----------------------------------------------------------------------------------------------------------------------------------------------------------------
// Visuals
//-----------------------------------------------------------------------------------------------------------------------------------------------------------------
filterColor = finalFilter > finalFilter[1] ? #0aff68 : #ff0a5a
plot(finalFilter, "Filter", filterColor, 2)
plot(hband, "High Band", filterColor)
plot(lband, "Low Band", filterColor)
fill(plot(hband), plot(lband), color.new(filterColor, 90), "Channel Fill")