
Strategi ini adalah sistem perdagangan yang mengesan trend yang menggabungkan Gaussian Channel dan indeks Stochastic RSI yang agak kuat secara rawak. Gaussian Channel digunakan untuk mengenal pasti trend harga dan julat turun naik, dan Stochastic RSI berfungsi sebagai penapis untuk mengesahkan keadaan overbought dan oversold, yang meningkatkan ketepatan isyarat perdagangan.
Logik teras strategi adalah berdasarkan komponen utama berikut:
Strategi ini membina sistem perdagangan yang mempunyai ciri trend dan dinamik dengan menggabungkan Gaussian Channel dan Stochastic RSI. Strategi ini direka dengan munasabah, mempunyai skalabiliti dan daya serap yang baik. Dengan arah pengoptimuman yang disyorkan, anda dapat meningkatkan kestabilan dan keuntungan strategi. Dalam aplikasi sebenar, disarankan untuk menguji sepenuhnya kombinasi parameter yang berbeza dan melakukan pengoptimuman yang disasarkan berdasarkan ciri-ciri pasaran tertentu.
/*backtest
start: 2025-01-21 00:00:00
end: 2025-02-20 00:00:00
period: 1h
basePeriod: 1h
exchanges: [{"eid":"Binance","currency":"ETH_USDT"}]
*/
//@version=6
strategy("Gaussian Channel + Stochastic RSI Filter", overlay=true, margin_long=100, margin_short=100)
// === INPUTS ===
input_length = input.int(100, title="Gaussian Channel Length", minval=1)
input_mult = input.float(2.0, title="Gaussian Channel Multiplier", minval=0.1, step=0.1)
stoch_rsi_period = input.int(14, title="Stochastic RSI Period", minval=1)
stoch_rsi_smoothK = input.int(3, title="Stochastic RSI Smooth K", minval=1)
stoch_rsi_smoothD = input.int(3, title="Stochastic RSI Smooth D", minval=1)
stoch_rsi_overbought = input.float(80.0, title="Stochastic RSI Overbought Level", minval=0, maxval=100)
stoch_rsi_oversold = input.float(20.0, title="Stochastic RSI Oversold Level", minval=0, maxval=100)
// === GAUSSIAN CHANNEL ===
// Gaussian filter calculation with proper initialization
gauss(src, len) =>
b = math.exp(-1.414 * 3.14159 / len)
a0 = 1 - b
var float f = na
f := na(f[1]) ? src : a0 * src + b * f[1]
// Calculate Gaussian channel
gaussian_channel_mid = gauss(close, input_length)
gaussian_channel_high = gaussian_channel_mid + gaussian_channel_mid * input_mult / 100
gaussian_channel_low = gaussian_channel_mid - gaussian_channel_mid * input_mult / 100
// Plot Gaussian Channel
plot(gaussian_channel_mid, color=color.blue, linewidth=2, title="Gaussian Channel Midline")
plot(gaussian_channel_high, color=color.green, linewidth=1, title="Gaussian Channel Upper Band")
plot(gaussian_channel_low, color=color.red, linewidth=1, title="Gaussian Channel Lower Band")
// === STOCHASTIC RSI ===
k = ta.sma(ta.stoch(close, high, low, stoch_rsi_period), stoch_rsi_smoothK)
d = ta.sma(k, stoch_rsi_smoothD)
is_oversold = k < stoch_rsi_oversold and d < stoch_rsi_oversold
is_overbought = k > stoch_rsi_overbought and d > stoch_rsi_overbought
// Plot Stochastic RSI
hline(stoch_rsi_overbought, "Overbought", color=color.red, linestyle=hline.style_dotted)
hline(stoch_rsi_oversold, "Oversold", color=color.green, linestyle=hline.style_dotted)
plot(k, color=color.blue, title="Stochastic RSI %K")
plot(d, color=color.orange, title="Stochastic RSI %D")
// === ENTRY AND EXIT LOGIC ===
// Long entry: Price crosses above Gaussian Channel lower band and Stochastic RSI is oversold
long_condition = ta.crossover(close, gaussian_channel_low) and is_oversold
// Short entry: Price crosses below Gaussian Channel upper band and Stochastic RSI is overbought
short_condition = ta.crossunder(close, gaussian_channel_high) and is_overbought
// Exit logic
long_exit = ta.crossunder(close, gaussian_channel_mid) or is_overbought
short_exit = ta.crossover(close, gaussian_channel_mid) or is_oversold
// Execute trades
if (long_condition)
strategy.entry("Long", strategy.long)
if (short_condition)
strategy.entry("Short", strategy.short)
if (long_exit)
strategy.close("Long")
if (short_exit)
strategy.close("Short")
// === SETTINGS ===
// Backtest date range
start_date = timestamp(2023, 1, 1, 0, 0)
end_date = timestamp(2069, 1, 1, 0, 0)
if (time < start_date or time > end_date)
strategy.close_all()