
Ini adalah strategi perdagangan trend-following yang menggabungkan Reaktor Trend Dinamis dan Regression Multi-Kernel. Strategi ini menggunakan ATR dan SMA untuk mengira garis sokongan / rintangan dinamik, dan menggunakan gabungan regressi dari teras Gauss dan teras Epanechnikov untuk mengenal pasti trend pasaran.
Strategi ini terdiri daripada empat bahagian utama:
Reaktor Trend Dinamik ((DR): menggunakan ATR dan SMA untuk membina jalur sokongan / rintangan dinamik, menilai arah trend berdasarkan kedudukan harga. Gunakan jalur bawah sebagai sokongan dalam trend menaik, gunakan jalur atas sebagai rintangan dalam trend menurun.
Multicore Regression ((MKR): Pengembalian harga yang digabungkan dengan teras Gauss dan teras Epanechnikov, mewujudkan kombinasi optimum kedua-dua fungsi teras melalui parameter berat yang boleh disesuaikan. Kaedah ini lebih baik menangkap ciri-ciri dinamik pergerakan harga.
Penapisan Trend MA200: Menggunakan garis purata harian 200 sebagai penunjuk trend jangka panjang, hanya membenarkan perdagangan apabila harga membentuk trend yang jelas dengan MA200, dan mengenal pasti tempoh penyusunan dengan parameter ConsolidationRange.
Sistem pengurusan wang: menggunakan tiga sasaran keuntungan ((1.5%, 3.0%, 4.5%) dan 1% berhenti rugi, peruntukan kedudukan dalam perkadaran 33% -33% -34%, mengawal risiko sambil memaksimumkan keuntungan.
Strategi ini membina satu sistem perdagangan yang lengkap dengan menggabungkan pelbagai petunjuk teknikal dan kaedah statistik yang canggih. Keunggulan strategi ini terletak pada pengendalian trend yang tepat dan sistem pengurusan risiko yang baik, tetapi juga perlu memperhatikan masalah pengoptimuman parameter dan kesesuaian pasaran.
/*backtest
start: 2024-02-25 00:00:00
end: 2024-08-07 00:00:00
period: 1h
basePeriod: 1h
exchanges: [{"eid":"Binance","currency":"SOL_USDT"}]
*/
//@version=5
strategy("DR + Multi Kernel Regression + Signals + MA200 with TP/SL (Optimized)", overlay=true, shorttitle="DR+MKR+Signals+MA200_TP_SL_Opt", pyramiding=0, default_qty_type=strategy.percent_of_equity, default_qty_value=10)
// =====================================================================
// PARTEA 1: Dynamic Reactor – linie unică colorată în funcție de trend
// =====================================================================
// Parametri pentru Dynamic Reactor
atrLength = input.int(14, title="Lungimea ATR", minval=1)
smaLength = input.int(20, title="Lungimea SMA", minval=1)
multiplier = input.float(1.5, title="Multiplicator ATR", minval=0.1, step=0.1)
// Calculăm ATR și SMA
atrValue = ta.atr(atrLength)
smaValue = ta.sma(close, smaLength)
// Benzile de bază
basicUpper = smaValue + atrValue * multiplier
basicLower = smaValue - atrValue * multiplier
// Calculăm benzile finale (similar cu SuperTrend)
var float finalUpper = basicUpper
var float finalLower = basicLower
if bar_index > 0
finalUpper := close[1] > finalUpper[1] ? math.max(basicUpper, finalUpper[1]) : basicUpper
finalLower := close[1] < finalLower[1] ? math.min(basicLower, finalLower[1]) : basicLower
// Determinăm trendul curent:
// - Dacă prețul curent este peste finalUpper din bara anterioară → uptrend (1)
// - Dacă prețul este sub finalLower din bara anterioară → downtrend (-1)
// - Altfel, păstrăm trendul precedent.
var int trend = 1
if bar_index > 0
trend := close > finalUpper[1] ? 1 : close < finalLower[1] ? -1 : nz(trend[1], 1)
// Linia Dynamic Reactor:
// - În uptrend se utilizează finalLower (nivel de suport)
// - În downtrend se utilizează finalUpper (nivel de rezistență)
drLine = trend == 1 ? finalLower : finalUpper
// Plotăm linia Dynamic Reactor
p_dr = plot(drLine, color=trend == 1 ? color.green : color.red, title="Dynamic Reactor", linewidth=2)
// =====================================================================
// PARTEA 2: Multi Kernel Regression
// =====================================================================
// Parametri pentru regresia cu kernel
regLength = input.int(50, title="Perioada regresiei", minval=1)
h1 = input.float(10.0, title="Bandă Gaussiană (h1)", minval=0.1)
h2 = input.float(10.0, title="Bandă Epanechnikov (h2)", minval=0.1)
alpha = input.float(0.5, title="Pondere Kernel Gaussian (0-1)", minval=0, maxval=1)
// Funcție: regresie cu kernel Gaussian
f_gaussian_regression(bw) =>
num = 0.0
den = 0.0
for i = 0 to regLength - 1
// Kernel Gaussian: K(x) = exp(-0.5 * (i/bw)^2)
weight = math.exp(-0.5 * math.pow(i / bw, 2))
num += close[i] * weight
den += weight
num / (den == 0 ? 1 : den)
// Funcție: regresie cu kernel Epanechnikov
f_epanechnikov_regression(bw) =>
num = 0.0
den = 0.0
for i = 0 to regLength - 1
ratio = i / bw
// Kernel Epanechnikov: K(u) = 1 - u^2 pentru |u| <= 1, altfel 0
weight = math.abs(ratio) <= 1 ? (1 - math.pow(ratio, 2)) : 0
num += close[i] * weight
den += weight
num / (den == 0 ? 1 : den)
// Calculăm regresiile pentru fiecare kernel
regGauss = f_gaussian_regression(h1)
regEpan = f_epanechnikov_regression(h2)
// Combinăm rezultatele celor două regresii
multiKernelRegression = alpha * regGauss + (1 - alpha) * regEpan
// Plotăm linia Multi Kernel Regression
p_mkr = plot(multiKernelRegression, color=trend == 1 ? color.green : color.red, title="Multi Kernel Regression", linewidth=2)
// Adăugăm ceata (fill) între Dynamic Reactor și Multi Kernel Regression
fillColor = trend == 1 ? color.new(color.green, 80) : color.new(color.red, 80)
fill(p_dr, p_mkr, color=fillColor, title="Trend Fill")
// =====================================================================
// PARTEA 2.1: MA 200 și evidențierea consolidării
// =====================================================================
// Calculăm MA 200 pentru trend pe termen lung
ma200 = ta.sma(close, 200)
p_ma200 = plot(ma200, color=color.blue, title="MA 200", linewidth=2)
// Parametru pentru detectarea consolidării (cât de aproape trebuie să fie prețul de MA200, în %)
consolidationRange = input.float(1.0, title="Consolidation Range (%)", minval=0.1, step=0.1)
// Determinăm dacă suntem într-o fază de consolidare (prețul este în interiorul unui interval mic în jurul MA200)
isConsolidation = (math.abs(close - ma200) / ma200 * 100) < consolidationRange
// Colorăm fundalul graficului cu un gri translucid atunci când e consolidare
bgcolor(isConsolidation ? color.new(color.gray, 90) : na, title="Consolidation BG")
// =====================================================================
// PARTEA 3: Semnale Buy și Sell
// =====================================================================
// Semnale de intrare:
// - Buy Signal: când linia Multi Kernel Regression trece peste linia Dynamic Reactor
// - Sell Signal: când linia Multi Kernel Regression trece sub linia Dynamic Reactor
buySignal = ta.crossover(multiKernelRegression, drLine)
sellSignal = ta.crossunder(multiKernelRegression, drLine)
// Plotăm semnalele pe grafic
plotshape(buySignal, style=shape.triangleup, location=location.belowbar, color=color.green, size=size.tiny, title="Buy Signal")
plotshape(sellSignal, style=shape.triangledown, location=location.abovebar, color=color.red, size=size.tiny, title="Sell Signal")
// Setăm condiții de alertă
alertcondition(buySignal, title="Buy Alert", message="Buy Signal: Kernel is above Dynamic Reactor")
alertcondition(sellSignal, title="Sell Alert", message="Sell Signal: Kernel is below Dynamic Reactor")
// =====================================================================
// PARTEA 4: Trade Management – Intrări, 3 TP și 1 SL
// =====================================================================
// Parametrii pentru TP și SL (valori ajustate pentru un raport risc-recompensă mai favorabil)
tp1Perc = input.float(1.5, title="TP1 (%)", minval=0.1, step=0.1)
tp2Perc = input.float(3.0, title="TP2 (%)", minval=0.1, step=0.1)
tp3Perc = input.float(4.5, title="TP3 (%)", minval=0.1, step=0.1)
slPerc = input.float(1.0, title="Stop Loss (%)", minval=0.1, step=0.1)
// ---- Intrări de tranzacționare cu filtrare suplimentară pe baza trendului MA200 și consolidării ----
// Pentru poziții long, intrăm doar când prețul este peste MA200 și nu este în consolidare.
// Pentru poziții short, intrăm doar când prețul este sub MA200 și nu este în consolidare.
if (buySignal and close > ma200 and not isConsolidation)
strategy.entry("Long", strategy.long)
if (sellSignal and close < ma200 and not isConsolidation)
strategy.entry("Short", strategy.short)
// ---- Gestionarea ordinelor pentru poziții long ----
if (strategy.position_size > 0)
entryPrice = strategy.position_avg_price
// Calculăm nivelurile de TP și SL pentru poziția long
long_sl = entryPrice * (1 - slPerc / 100)
long_tp1 = entryPrice * (1 + tp1Perc / 100)
long_tp2 = entryPrice * (1 + tp2Perc / 100)
long_tp3 = entryPrice * (1 + tp3Perc / 100)
// Plasăm TP-urile (alocări: 33%, 33% și 34%)
strategy.exit("Long_TP1", from_entry="Long", limit=long_tp1, qty_percent=33, comment="TP1")
strategy.exit("Long_TP2", from_entry="Long", limit=long_tp2, qty_percent=33, comment="TP2")
strategy.exit("Long_TP3", from_entry="Long", limit=long_tp3, qty_percent=34, comment="TP3")
// Plasăm ordinul de SL pentru poziția long
strategy.exit("Long_SL", from_entry="Long", stop=long_sl, comment="SL")
// ---- Gestionarea ordinelor pentru poziții short ----
if (strategy.position_size < 0)
entryPrice = strategy.position_avg_price
// Calculăm nivelurile de TP și SL pentru poziția short
short_sl = entryPrice * (1 + slPerc / 100)
short_tp1 = entryPrice * (1 - tp1Perc / 100)
short_tp2 = entryPrice * (1 - tp2Perc / 100)
short_tp3 = entryPrice * (1 - tp3Perc / 100)
// Plasăm TP-urile (alocări: 33%, 33% și 34%)
strategy.exit("Short_TP1", from_entry="Short", limit=short_tp1, qty_percent=33, comment="TP1")
strategy.exit("Short_TP2", from_entry="Short", limit=short_tp2, qty_percent=33, comment="TP2")
strategy.exit("Short_TP3", from_entry="Short", limit=short_tp3, qty_percent=34, comment="TP3")
// Plasăm ordinul de SL pentru poziția short
strategy.exit("Short_SL", from_entry="Short", stop=short_sl, comment="SL")