Estratégia de negociação de regressão de média móvel bidirecional


Data de criação: 2024-01-15 12:15:14 última modificação: 2024-01-15 12:15:14
cópia: 0 Cliques: 670
1
focar em
1617
Seguidores

Estratégia de negociação de regressão de média móvel bidirecional

Visão geral

A estratégia de negociação de reversão de média móvel bidirecional (Bidirectional Moving Average Reversion Trading Strategy) é uma estratégia de negociação quantitativa construída usando o princípio de reversão de média móvel de preço. A estratégia capta oportunidades de reversão de preço através da configuração de múltiplos conjuntos de médias móveis, entrando em campo depois de um certo grau de desvio da média e esperando que o preço volte à média.

Princípio da estratégia

A estratégia baseia-se na teoria da regressão média dos preços. A estratégia acredita que os preços sempre giram em torno de uma flutuação média e são mais propensos a regressar ao valor médio quando os preços se desviam muito do valor médio. Concretamente, a estratégia configura simultaneamente três conjuntos de médias: a média de posição aberta, a média de posição baixa e a média de limite.

A partir da lógica do código, a linha média de abertura de posição é dividida em linha média e linha curta, composta por uma linha longa e uma linha curta. O grau de desvio entre elas e o preço determina o tamanho da posição. Além disso, a linha média de liquidação é uma linha média separada para determinar o tempo de liquidação.

Análise de vantagens

Os principais benefícios da regressão bidireccional são:

  1. Capturar a reversão de preços e ajustar-se à tendência de liquidação
  2. Controle de Risco por Perda Limitada
  3. Combinações de parâmetros personalizáveis e adaptáveis
  4. É fácil de entender e de optimizar os parâmetros

A estratégia é adequada para variedades com baixa volatilidade e menor alcance de flutuação de preços, especialmente para variedades que entram na fase de recuperação. Ela pode efetivamente capturar oportunidades de reversão temporária de preços.

Análise de Riscos

A estratégia de regressão bidirecional também tem alguns riscos:

  1. A estratégia pode ser executada em uma série de posições abertas e, eventualmente, explodidas quando ocorre uma onda de alta.
  2. Risco excessivo de flutuação de preços. Se a flutuação de preços for excessiva, a posição pode atingir o limite de perda e ser forçada a fechar.
  3. Risco de otimização de parâmetros. A configuração de parâmetros da estratégia tem um impacto importante na sua rentabilidade, e se a configuração de parâmetros for inadequada, a probabilidade de lucro será drasticamente reduzida.

Para os riscos acima mencionados, é possível otimizar os seguintes aspectos:

  1. Aumentar as restrições de abertura para evitar aberturas excessivas
  2. Reduzir adequadamente o tamanho das posições para evitar o risco de ruptura
  3. Optimizar as configurações como o ciclo da linha média e os parâmetros da linha de equilíbrio

Direção de otimização

A estratégia também tem um grande espaço para otimização, principalmente a partir dos seguintes ângulos:

  1. Aumentar a lógica das condições de abertura de posição para evitar a queda de catástrofe em condições de tendência
  2. Adição de uma lógica de redução de posição para evitar riscos de grandes movimentos de preços
  3. Experimentar diferentes tipos de mediadores para encontrar uma melhor combinação de parâmetros
  4. Parâmetros de otimização automática usando métodos de aprendizagem de máquina
  5. Aumentar as estratégias de stop loss automáticas para melhor controlar os riscos

Resumir

A estratégia de negociação de retorno de linha de equilíbrio bidirecional é lucrativa ao capturar oportunidades de retorno após o desvio do preço da linha de equilíbrio móvel. Ela controla o risco de forma eficaz e pode obter melhores ganhos com a otimização de parâmetros. Embora a estratégia também tenha alguns riscos, ela pode ser controlada por meio de métodos como aperfeiçoar a lógica de abertura de posição e reduzir o tamanho da posição.

Código-fonte da estratégia
/*backtest
start: 2023-12-15 00:00:00
end: 2024-01-14 00:00:00
period: 1h
basePeriod: 15m
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
*/

//@version=5
strategy(title = "hamster-bot MRS 2", overlay = true, default_qty_type = strategy.percent_of_equity, initial_capital = 100, default_qty_value = 30, pyramiding = 1, commission_value = 0.1, backtest_fill_limits_assumption = 1)
info_options = "Options"

on_close = input(false, title = "Entry on close", inline=info_options, group=info_options)
OFFS = input.int(0, minval = 0, maxval = 1, title = "| Offset View", inline=info_options, group=info_options)
trade_offset = input.int(0, minval = 0, maxval = 1, title = "Trade", inline=info_options, group=info_options)
use_kalman_filter = input.bool(false, title="Use Kalman filter", group=info_options)

//MA Opening
info_opening = "MA Opening Long"
maopeningtyp_l = input.string("SMA", title="Type", options=["SMA", "EMA", "TEMA", "DEMA", "ZLEMA", "WMA", "Hma", "Thma", "Ehma", "H", "L", "DMA"], title = "", inline=info_opening, group=info_opening)
maopeningsrc_l = input.source(ohlc4, title = "", inline=info_opening, group=info_opening)
maopeninglen_l = input.int(3, minval = 1, title = "", inline=info_opening, group=info_opening)
long1on    = input(true, title = "", inline = "long1")
long1shift = input.float(0.96, step = 0.005, title = "Long", inline = "long1")
long1lot   = input.int(10, minval = 0, maxval = 10000, step = 10, title = "Lot 1", inline = "long1")

info_opening_s = "MA Opening Short"
maopeningtyp_s = input.string("SMA", title="Type", options=["SMA", "EMA", "TEMA", "DEMA", "ZLEMA", "WMA", "Hma", "Thma", "Ehma", "H", "L", "DMA"], title = "", inline=info_opening_s, group=info_opening_s)
maopeningsrc_s = input.source(ohlc4, title = "", inline=info_opening_s, group=info_opening_s)
maopeninglen_s = input.int(3, minval = 1, title = "", inline=info_opening_s, group=info_opening_s)
short1on    = input(true, title = "", inline = "short1")
short1shift = input.float(1.04, step = 0.005, title = "short", inline = "short1")
short1lot   = input.int(10, minval = 0, maxval = 10000, step = 10, title = "Lot 1", inline = "short1")


//MA Closing
info_closing = "MA Closing"
maclosingtyp = input.string("SMA", title="Type", options=["SMA", "EMA", "TEMA", "DEMA", "ZLEMA", "WMA", "Hma", "Thma", "Ehma", "H", "L", "DMA"], title = "", inline=info_closing, group=info_closing)
maclosingsrc = input.source(ohlc4, title = "", inline=info_closing, group=info_closing)
maclosinglen = input.int(3, minval = 1, maxval = 200, title = "", inline=info_closing, group=info_closing)
maclosingmul = input.float(1, step = 0.005, title = "mul", inline=info_closing, group=info_closing)

startTime = input(timestamp("01 Jan 2010 00:00 +0000"), "Start date", inline = "period")
finalTime = input(timestamp("31 Dec 2030 23:59 +0000"), "Final date", inline = "period")

HMA(_src, _length) =>  ta.wma(2 * ta.wma(_src, _length / 2) - ta.wma(_src, _length), math.round(math.sqrt(_length)))
EHMA(_src, _length) =>  ta.ema(2 * ta.ema(_src, _length / 2) - ta.ema(_src, _length), math.round(math.sqrt(_length)))
THMA(_src, _length) =>  ta.wma(ta.wma(_src,_length / 3) * 3 - ta.wma(_src, _length / 2) - ta.wma(_src, _length), _length)
tema(sec, length)=>
    tema1= ta.ema(sec, length)
    tema2= ta.ema(tema1, length)
    tema3= ta.ema(tema2, length)
    tema_r = 3*tema1-3*tema2+tema3
donchian(len) => math.avg(ta.lowest(len), ta.highest(len))
ATR_func(_src, _len)=>
    atrLow = low - ta.atr(_len)
    trailAtrLow = atrLow
    trailAtrLow := na(trailAtrLow[1]) ? trailAtrLow : atrLow >= trailAtrLow[1] ? atrLow : trailAtrLow[1]
    supportHit = _src <= trailAtrLow
    trailAtrLow := supportHit ? atrLow : trailAtrLow
    trailAtrLow
f_dema(src, len)=>
    EMA1 = ta.ema(src, len)
    EMA2 = ta.ema(EMA1, len)
    DEMA = (2*EMA1)-EMA2
f_zlema(src, period) =>
    lag = math.round((period - 1) / 2)
    ema_data = src + (src - src[lag])
    zl= ta.ema(ema_data, period)
f_kalman_filter(src) =>
    float value1= na
    float value2 = na
    value1 := 0.2 * (src - src[1]) + 0.8 * nz(value1[1])
    value2 := 0.1 * (ta.tr) + 0.8 * nz(value2[1])
    lambda = math.abs(value1 / value2)
    alpha = (-math.pow(lambda, 2) + math.sqrt(math.pow(lambda, 4) + 16 * math.pow(lambda, 2)))/8
    value3 = float(na)
    value3 := alpha * src + (1 - alpha) * nz(value3[1])
//SWITCH
ma_func(modeSwitch, src, len, use_k_f=true) =>
      modeSwitch == "SMA"   ? use_kalman_filter and use_k_f ? f_kalman_filter(ta.sma(src, len))  : ta.sma(src, len) :
      modeSwitch == "RMA"   ? use_kalman_filter and use_k_f ? f_kalman_filter(ta.rma(src, len))  : ta.rma(src, len) :
      modeSwitch == "EMA"   ? use_kalman_filter and use_k_f ? f_kalman_filter(ta.ema(src, len))  : ta.ema(src, len) :
      modeSwitch == "TEMA"  ? use_kalman_filter and use_k_f ? f_kalman_filter(tema(src, len))    : tema(src, len):
      modeSwitch == "DEMA"  ? use_kalman_filter and use_k_f ? f_kalman_filter(f_dema(src, len))  : f_dema(src, len):
      modeSwitch == "ZLEMA" ? use_kalman_filter and use_k_f ? f_kalman_filter(f_zlema(src, len)) : f_zlema(src, len):
      modeSwitch == "WMA"   ? use_kalman_filter and use_k_f ? f_kalman_filter(ta.wma(src, len))  : ta.wma(src, len):
      modeSwitch == "VWMA"  ? use_kalman_filter and use_k_f ? f_kalman_filter(ta.vwma(src, len)) : ta.vwma(src, len):
      modeSwitch == "Hma"   ? use_kalman_filter and use_k_f ? f_kalman_filter(HMA(src, len))     : HMA(src, len):
      modeSwitch == "Ehma"  ? use_kalman_filter and use_k_f ? f_kalman_filter(EHMA(src, len))    : EHMA(src, len):
      modeSwitch == "Thma"  ? use_kalman_filter and use_k_f ? f_kalman_filter(THMA(src, len/2))  : THMA(src, len/2):
      modeSwitch == "ATR"   ? use_kalman_filter and use_k_f ? f_kalman_filter(ATR_func(src, len)): ATR_func(src, len) :
      modeSwitch == "L"   ? use_kalman_filter and use_k_f ? f_kalman_filter(ta.lowest(len)): ta.lowest(len) :
      modeSwitch == "H"   ? use_kalman_filter and use_k_f ? f_kalman_filter(ta.highest(len)): ta.highest(len) :
      modeSwitch == "DMA"   ? donchian(len) : na

//Var
sum = 0.0
maopening_l = 0.0
maopening_s = 0.0
maclosing = 0.0
pos = strategy.position_size
p = 0.0
p := pos == 0 ? (strategy.equity / 100) / close : p[1]
truetime = true
loss = 0.0
maxloss = 0.0
equity = 0.0

//MA Opening
maopening_l := ma_func(maopeningtyp_l, maopeningsrc_l, maopeninglen_l)
maopening_s := ma_func(maopeningtyp_s, maopeningsrc_s, maopeninglen_s)

//MA Closing
maclosing := ma_func(maclosingtyp, maclosingsrc, maclosinglen) * maclosingmul

long1 = long1on == false ? 0 : long1shift == 0 ? 0 : long1lot == 0 ? 0 : maopening_l == 0 ? 0 : maopening_l * long1shift
short1 = short1on == false ? 0 : short1shift == 0 ? 0 : short1lot == 0 ? 0 : maopening_s == 0 ? 0 : maopening_s * short1shift
//Colors
long1col = long1 == 0 ? na : color.green
short1col = short1 == 0 ? na : color.red
//Lines
// plot(maopening_l, offset = OFFS, color = color.new(color.green, 50))
// plot(maopening_s, offset = OFFS, color = color.new(color.red, 50))
plot(maclosing, offset = OFFS, color = color.fuchsia)
long1line = long1 == 0 ? close : long1
short1line = short1 == 0 ? close : short1
plot(long1line, offset = OFFS, color = long1col)
plot(short1line, offset = OFFS, color = short1col)

//Lots
lotlong1 = p * long1lot
lotshort1 = p * short1lot

//Entry
if truetime
    //Long
    sum := 0
    strategy.entry("L", strategy.long, lotlong1, limit = on_close ? na : long1, when = long1 > 0 and pos <= sum and (on_close ? close <= long1[trade_offset] : true))
    sum := lotlong1

    //Short
    sum := 0
    pos := -1 * pos
    strategy.entry("S", strategy.short, lotshort1, limit = on_close ? na : short1, when = short1 > 0 and pos <= sum and (on_close ? close >= short1[trade_offset] : true))
    sum := lotshort1

strategy.exit("Exit", na, limit = maclosing)
if time > finalTime
    strategy.close_all()