
O modelo de três fatores para determinar a oscilação de preços é uma estratégia de negociação de curto prazo que combina um julgamento de vários fatores. A estratégia considera o cálculo de vários fatores de volume de transação, indicadores RSI, MACD e indicadores de linha de sinal, para julgar o comportamento de oscilação de preços e descobrir oportunidades de negociação de curto prazo.
A lógica central da estratégia é:
Computação de indicadores técnicos, como médias móveis rápidas, médias móveis lentas, curvas MACD e linhas de sinal;
Para avaliar a taxa de transação, o RSI, o MACD e os indicadores de linha de sinalização;
A avaliação de múltiplos fatores, confirmando que o momento atual é um período de flutuação dos preços, com oportunidades de compra e venda;
Entrar em posições LONG ou SHORT e definir um stop loss;
Quando o preço atinge um ponto de parada ou um ponto de perda, a posição de equilíbrio é eliminada.
A estratégia usa de forma flexível a avaliação de múltiplos fatores, como a taxa de transação, o indicador RSI, o indicador MACD e o indicador de linha de sinal, para avaliar o comportamento de oscilação de preços e capturar oportunidades de negociação em linha curta. A avaliação de múltiplos fatores em combinação evita sinais errados causados por um único fator e melhora a precisão do sinal.
A estratégia tem as seguintes vantagens:
A estratégia também apresenta os seguintes riscos:
Os riscos acima podem ser otimizados de acordo com:
A estratégia pode ser melhorada em vários aspectos:
Optimizar o peso de múltiplos fatores, realização de ajustes dinâmicos. De acordo com diferentes situações, o julgamento de múltiplos fatores pode ser ajustado de acordo com o peso, aumentando a adaptabilidade;
Combinação de algoritmos de aprendizagem de máquina para otimizar a auto-adaptação de múltiplos fatores. Usar redes neurais, algoritmos genéticos e outros para treinar modelos de múltiplos fatores para otimizar os parâmetros de forma autônoma.
Optimizar a estratégia de stop loss. Pode testar diferentes combinações de tracking stop loss, move stop loss e encontrar o melhor plano de stop loss;
Combinação de indicadores de alta tecnologia. Pode testar mais indicadores, como oscilação de taxa de flutuação, vibração de força, e uma rica combinação de fatores.
A estratégia de arbitragem do modelo de três fatores aproveita as características multifatoriais do intervalo de volatilidade dos preços para obter uma estratégia de negociação de linha curta e eficiente. A estratégia usa julgamentos multifatoriais, como volume de transação, RSI, MACD e linha de sinal, para determinar o melhor momento de compra e venda. O julgamento multifatorial aumenta a precisão do sinal, o que é útil para obter ganhos estáveis.
/*backtest
start: 2024-01-26 00:00:00
end: 2024-02-25 00:00:00
period: 4h
basePeriod: 15m
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
*/
//@version=5
strategy("3 10.0 Oscillator Profile Flagging", shorttitle="3 10.0 Oscillator Profile Flagging", overlay=false)
signalBiasValue = input(title="Signal Bias", defval=0.26)
macdBiasValue = input(title="MACD Bias", defval=0.7)
shortLookBack = input( title="Short LookBack", defval=3)
longLookBack = input( title="Long LookBack", defval=6)
takeProfit = input( title="Take Profit", defval=2)
stopLoss = input( title="Stop Loss", defval=0.7)
fast_ma = ta.sma(close, 3)
slow_ma = ta.sma(close, 10)
macd = fast_ma - slow_ma
signal = ta.sma(macd, 16)
hline(0, "Zero Line", color = color.black)
buyVolume = volume*((close-low)/(high-low))
sellVolume = volume*((high-close)/(high-low))
buyVolSlope = buyVolume - buyVolume[1]
sellVolSlope = sellVolume - sellVolume[1]
signalSlope = ( signal - signal[1] )
macdSlope = ( macd - macd[1] )
plot(macd, color=color.blue, title="Total Volume")
plot(signal, color=color.orange, title="Total Volume")
plot(macdSlope, color=color.green, title="MACD Slope")
plot(signalSlope, color=color.red, title="Signal Slope")
intrabarRange = high - low
rsi = ta.rsi(close, 14)
rsiSlope = rsi - rsi[1]
plot(rsiSlope, color=color.black, title="RSI Slope")
getRSISlopeChange(lookBack) =>
j = 0
for i = 0 to lookBack
if ( rsi[i] - rsi[ i + 1 ] ) > -5
j += 1
j
getBuyerVolBias(lookBack) =>
j = 0
for i = 1 to lookBack
if buyVolume[i] > sellVolume[i]
j += 1
j
getSellerVolBias(lookBack) =>
j = 0
for i = 1 to lookBack
if sellVolume[i] > buyVolume[i]
j += 1
j
getVolBias(lookBack) =>
float b = 0.0
float s = 0.0
for i = 1 to lookBack
b += buyVolume[i]
s += sellVolume[i]
b > s
getSignalBuyerBias(lookBack) =>
j = 0
for i = 1 to lookBack
if signal[i] > signalBiasValue
j += 1
j
getSignalSellerBias(lookBack) =>
j = 0
for i = 1 to lookBack
if signal[i] < ( 0.0 - signalBiasValue )
j += 1
j
getSignalNoBias(lookBack) =>
j = 0
for i = 1 to lookBack
if signal[i] < signalBiasValue and signal[i] > ( 0.0 - signalBiasValue )
j += 1
j
getPriceRising(lookBack) =>
j = 0
for i = 1 to lookBack
if close[i] > close[i + 1]
j += 1
j
getPriceFalling(lookBack) =>
j = 0
for i = 1 to lookBack
if close[i] < close[i + 1]
j += 1
j
getRangeNarrowing(lookBack) =>
j = 0
for i = 1 to lookBack
if intrabarRange[i] < intrabarRange[i + 1]
j+= 1
j
getRangeBroadening(lookBack) =>
j = 0
for i = 1 to lookBack
if intrabarRange[i] > intrabarRange[i + 1]
j+= 1
j
bool isNegativeSignalReversal = signalSlope < 0.0 and signalSlope[1] > 0.0
bool isNegativeMacdReversal = macdSlope < 0.0 and macdSlope[1] > 0.0
bool isPositiveSignalReversal = signalSlope > 0.0 and signalSlope[1] < 0.0
bool isPositiveMacdReversal = macdSlope > 0.0 and macdSlope[1] < 0.0
bool hasBearInversion = signalSlope > 0.0 and macdSlope < 0.0
bool hasBullInversion = signalSlope < 0.0 and macdSlope > 0.0
bool hasSignalBias = math.abs(signal) >= signalBiasValue
bool hasNoSignalBias = signal < signalBiasValue and signal > ( 0.0 - signalBiasValue )
bool hasSignalBuyerBias = hasSignalBias and signal > 0.0
bool hasSignalSellerBias = hasSignalBias and signal < 0.0
bool hasPositiveMACDBias = macd > macdBiasValue
bool hasNegativeMACDBias = macd < ( 0.0 - macdBiasValue )
bool hasBullAntiPattern = ta.crossunder(macd, signal)
bool hasBearAntiPattern = ta.crossover(macd, signal)
bool hasSignificantBuyerVolBias = buyVolume > ( sellVolume * 1.5 )
bool hasSignificantSellerVolBias = sellVolume > ( buyVolume * 1.5 )
// 202.30 Profit 55.29% 5m
if ( ( getVolBias(longLookBack) == false ) and rsi <= 41 and math.abs(rsi - rsi[shortLookBack]) > 1 and hasNoSignalBias and rsiSlope > 1.5 and close > open)
strategy.entry("5C1", strategy.long, qty=1.0)
strategy.exit("TPS", "5C1", limit=strategy.position_avg_price + takeProfit, stop=strategy.position_avg_price - stopLoss)
// 171.70 Profit 50.22% 5m
if ( getVolBias(longLookBack) == true and rsi > 45 and rsi < 55 and macdSlope > 0 and signalSlope > 0)
strategy.entry("5C2", strategy.long, qty=1.0)
strategy.exit("TPS", "5C2", limit=strategy.position_avg_price + takeProfit, stop=strategy.position_avg_price - stopLoss)
// 309.50 Profit 30.8% 5m 2 tp .7 sl 289 trades
if ( macd > macdBiasValue and macdSlope > 0)
strategy.entry("5P1", strategy.short, qty=1.0)
strategy.exit("TPS", "5P1", limit=strategy.position_avg_price - takeProfit, stop=strategy.position_avg_price + stopLoss)