
O sistema de negociação de rastreamento de tendências de múltiplos indicadores de taxa de volatilidade auto-adaptável é uma estratégia de negociação quantitativa projetada para mercados altamente voláteis, que combina indicadores técnicos de ajuste dinâmico com mecanismos avançados de gerenciamento de risco. O núcleo da estratégia é ajustar dinamicamente os parâmetros da linha de média móvel através do ATR (Amplitude Real Média) para se adaptar à flutuação do mercado, enquanto integra a RSI, o filtro de compra e venda de supermercados, o padrão de plataforma, a identificação de tendências de múltiplos períodos de tempo e a construção gradual de posições (DCA), para formar um quadro de negociação abrangente.
O núcleo da estratégia é baseado nos seguintes módulos:
Adaptação ao sistema de equilíbrio móvelA estratégia usa uma média móvel simples rápida e lenta (SMA), cujo comprimento é ajustado dinamicamente pelo ATR. Em ambientes de alta volatilidade, o comprimento da média é reduzido para responder rapidamente às mudanças no mercado; em ambientes de baixa volatilidade, o comprimento da média é aumentado para reduzir o ruído. O sinal longo é gerado quando a média lenta é atravessada por uma média rápida e recebe a confirmação do preço; o sinal curto é o oposto.
RSI Filtragem de dinâmicaVerifique os sinais de entrada através do RSI (indicador de força relativa) para garantir que a direção da negociação esteja de acordo com a dinâmica do mercado. Esta função pode ser ativada ou desativada seletivamente e suporta parâmetros RSI personalizados (como comprimento 14, sobrecompra de 60 e sobrevenda de 40).
Identificação de decadênciaO sistema é capaz de reconhecer fortes tendências de bullish ou bearish engolindo e combinar volume de transação e intensidade de alcance para a verificação. Para evitar falsos sinais, o sistema vai saltar a negociação quando dois tipos de formas opostas aparecem ao mesmo tempo.
Confirmação de tendências de múltiplos períodos: Seletivamente alinhar os sinais de negociação com a tendência do SMA no período de 15 minutos, adicionar um nível de mecanismo de confirmação e melhorar a qualidade das negociações.
Mecanismos de DCA: Permitir muitas entradas na direção da tendência, suportar o máximo de entradas predefinidas (por exemplo, 4 entradas), o intervalo de entrada é definido com base no múltiplo ATR. Esse mecanismo ajuda a otimizar o custo médio em mercados de tendência contínua.
Gestão de Risco Superior:
Lógica de Execução de Transações: O sistema prioriza o sinal de forma de média móvel ou declínio ((segundo a escolha do usuário) e aplica filtros de volume de transação, volatilidade e tempo. Para garantir a qualidade de entrada, também foi aumentada a condição de pico de volume de transação ((volume de transação> 1.2*10a edição do SMA)
A capacidade de adaptação do mercadoAtravés da adaptação dinâmica dos parâmetros dos indicadores técnicos do ATR, a estratégia é capaz de se adaptar automaticamente a diferentes condições de mercado, mantendo a sua eficácia em ambientes de alta e baixa volatilidade.
Filtragem de qualidade de sinalO mecanismo de filtragem multicamadas ((RSI, tendências de múltiplos períodos de tempo, volume de transação e volatilidade) reduz efetivamente os falsos sinais e melhora a qualidade das transações.
Mecanismos flexíveis de admissão: Suporte para priorizar o uso de sinais de equilíbrio móvel ou declínio, de acordo com as preferências do usuário, e otimizar os pontos de entrada na direção da tendência com a função DCA.
Gestão de Riscos DinâmicosO ponto de parada e o ponto de parada de rastreamento ajustam-se às flutuações do mercado e à dinâmica dos lucros das negociações, dando espaço suficiente para a tendência se desenvolver, enquanto protegem o capital.
Ferramentas de visualização e de debugA estratégia oferece uma ampla cobertura de gráficos, painéis de instrumentos em tempo real e tabelas de debug para ajudar os usuários a otimizar os parâmetros e entender a lógica de negociação.
ModularidadeO usuário pode ativar ou desativar várias funções de acordo com suas preferências (como filtro RSI, identificação de padrões de queda, tendências de múltiplos períodos de tempo, etc.), altamente personalizado.
Controle de entrada minuciosoOs filtros de pico de volume de transação garantem a entrada apenas durante atividades de mercado significativas, enquanto o mecanismo de período de arrefecimento evita o excesso de negociação.
*O que fazer?*Teste de otimização de parâmetros extensivos, mas evite otimização excessiva; use testes de andamento (walk-forward testing) e testes fora da amostra para verificar a solidez da estratégia.
*O que fazer?*Considerar a adição de mecanismos de identificação de status de mercado, usando diferentes conjuntos de parâmetros em diferentes ambientes de mercado; implementar restrições de risco globais, como a suspensão de negociação após perdas máximas diárias ou perdas contínuas.
*O que fazer?*O que você pode fazer: Adicionar pontos de deslizamento reais e estimativas de comissões ao feedback; Evite negociar em períodos de baixa liquidez; Considere o uso de lista de preço limite em vez de lista de preço de mercado.
*O que fazer?*Utilize as ferramentas de debug fornecidas pela estratégia para monitorar de perto o desempenho de cada componente; mantenha boas anotações de código; considere a eficácia do teste modular de cada componente de forma independente.
*O que fazer?*O que é o mercado de ativos de uma empresa: estabelecer adequadamente o período de arrefecimento e o tempo mínimo de detenção; considerar rigorosamente os custos de transação na retrospectiva; regularmente revisar e otimizar os critérios de admissão.
Aprendizagem de máquinaIntrodução de algoritmos de otimização de parâmetros adaptativos, como otimização de Bayes ou algoritmos genéticos, para encontrar automaticamente o melhor conjunto de parâmetros para diferentes ambientes de mercado. Isso reduzirá a necessidade de otimização manual e aumentará a adaptabilidade das estratégias às mudanças no mercado.
Classificação do cenário de mercadoDesenvolver um sistema de classificação de estados de mercado (trends, oscilações, altos e baixos, etc.) e configurar os melhores parâmetros para cada estado. Esta abordagem pode ajustar o comportamento da estratégia mais rapidamente quando o mercado muda, reduzindo o atraso de adaptação.
Gestão de posições reforçadaIntrodução de algoritmos mais complexos de gerenciamento de posições, como o ajustamento de posições dinâmicas baseado na regra de Kelly ou na intensidade do momento. Isso pode otimizar o uso de fundos, aumentando a exposição em sinais fortes e reduzindo o risco em sinais fracos.
Integração de indicadores alternativosTestar a eficácia de outros indicadores técnicos, como Bollinger Bands, MACD ou Ichimoku Cloud Charts, como complemento ou substituição de sistemas existentes. Indicadores diferentes podem fornecer sinais mais precisos em determinadas condições de mercado.
Integração de dados emocionaisConsidere a inclusão de indicadores de sentimento de mercado, como o índice de volatilidade VIX ou dados do mercado de opções, para identificar antecipadamente potenciais transformações de mercado. Essas fontes de dados externos podem fornecer informações que os indicadores técnicos tradicionais não conseguem capturar.
Análise de correlação entre vários ativos: Desenvolver análises de correlação entre classes de ativos, usando sinais de um mercado para validar ou reforçar decisões de negociação em outro mercado relevante. Por exemplo, usar mudanças de preços de mercadorias para confirmar tendências em setores de ações relevantes.
Otimizar a eficiência computacionalRefazer o código para aumentar a eficiência computacional, especialmente para estratégias de alta frequência. Isso inclui otimizar o cálculo do ATR, a sequência de avaliação de condições e a redução de cálculos redundantes desnecessários.
O sistema de negociação de rastreamento de tendências de múltiplos indicadores de volatilidade auto-adaptável representa um método de negociação quantitativa abrangente e flexível, que responde de forma eficaz a diferentes ambientes de mercado por meio de ajustes de parâmetros dinâmicos e mecanismos de filtragem em várias camadas. O principal benefício da estratégia reside na sua auto-adaptabilidade e no seu quadro de gestão de risco integrado, o que a torna especialmente adequada para mercados de futuros de alta volatilidade.
A estratégia integra várias ferramentas clássicas de análise técnica (Moving Average, RSI, Elasticity) e elementos de negociação quantitativa moderna (Parametros Adaptáveis, Análise de Ciclo de Tempo Multiplo, DCA) para formar um sistema equilibrado. Ao controlar o tempo de entrada, otimizar a estratégia de entrada múltipla e ajustar dinamicamente os níveis de parada, a estratégia pode aproveitar as oportunidades de tendências de mercado, protegendo o capital.
No entanto, a complexidade da estratégia também traz desafios de sensibilidade de parâmetros e manutenção do sistema. Antes de implementar a estratégia, os investidores devem fazer um bom teste de retrospectiva e prospectiva e estar preparados para ajustar os parâmetros de acordo com as mudanças no mercado. As direções de otimização futuras incluem a introdução de parâmetros de otimização automática de tecnologia de aprendizado de máquina, a inclusão de um sistema de classificação de ambiente de mercado e melhorias nos algoritmos de gerenciamento de posição.
Em geral, a estratégia oferece uma estrutura de negociação quantitativa sólida, adequada para comerciantes experientes, personalizada de acordo com suas necessidades específicas e preferências de risco, que buscam uma vantagem de negociação consistente nos mercados financeiros em constante mudança.
/*backtest
start: 2024-04-11 00:00:00
end: 2025-04-10 00:00:00
period: 1h
basePeriod: 1h
exchanges: [{"eid":"Futures_Binance","currency":"ETH_USDT"}]
*/
//@version=6
strategy('Dskyz Adaptive Futures Elite (DAFE) - Updated',
overlay=true,
default_qty_type=strategy.fixed,
initial_capital=1000000,
commission_value=0,
slippage=1,
pyramiding=10)
// === INPUTS ===
// Moving Average Settings
fastLength = input.int(9, '[MA] Fast MA Length', minval=1)
slowLength = input.int(19, '[MA] Slow MA Length', minval=1)
// RSI Settings
useRSI = input.bool(false, '[RSI Settings] Use RSI Filter')
rsiLength = input.int(14, 'RSI Length', minval=1)
rsiOverbought = input.int(60, 'RSI Overbought', minval=50, maxval=100)
rsiOversold = input.int(40, 'RSI Oversold', minval=0, maxval=50)
rsiLookback = input.int(1, 'RSI Lookback', minval=1)
// Pattern Settings
usePatterns = input.bool(true, '[Pattern Settings] Use Candlestick Patterns')
patternLookback = input.int(19, 'Pattern Lookback Bars', minval=1)
// Filter Settings
useTrendFilter = input.bool(true, '[Filter Settings] Use 15m Trend Filter')
minVolume = input.int(10, 'Minimum Volume', minval=1)
volatilityThreshold = input.float(1.0, 'Volatility Threshold (%)', minval=0.1, step=0.1) / 100
tradingStartHour = input.int(9, 'Trading Start Hour (24h)', minval=0, maxval=23)
tradingEndHour = input.int(16, 'Trading End Hour (24h)', minval=0, maxval=23)
// DCA Settings
useDCA = input.bool(false, '[DCA Settings] Use DCA')
maxTotalEntries = input.int(4, 'Max Total Entries per Direction', minval=1)
dcaMultiplier = input.float(1.0, 'DCA ATR Multiplier', minval=0.1, step=0.1)
// Signal Settings
signalPriority = input.string('MA', '[Signal Settings] Signal Priority', options=['Pattern', 'MA'])
minBarsBetweenSignals = input.int(5, 'Min Bars Between Signals', minval=1)
plotMode = input.string('Potential Signals', 'Plot Mode', options=['Potential Signals', 'Actual Entries'])
// Exit Settings
trailOffset = input.float(0.5, '[Exit Settings] Trailing Stop Offset ATR Multiplier', minval=0.01, step=0.01)
trailPointsMult = input.float(0.5, 'Trailing Stop Points ATR Multiplier', minval=0.01, step=0.01)
profitTargetATRMult = input.float(1.2, 'Profit Target ATR Multiplier', minval=0.1, step=0.1) // Profit target factor
fixedStopMultiplier = input.float(1.3, 'Fixed Stop Multiplier', minval=0.5, step=0.1) // Fixed stop multiplier
// General Settings
debugLogging = input.bool(true, '[General Settings] Enable Debug Logging')
fixedQuantity = input.int(2, 'Trade Quantity', minval=1)
cooldownMinutes = input.int(0, 'Cooldown Minutes', minval=0)
// ATR Settings – Use Dynamic ATR or fixed value
useDynamicATR = input.bool(true, title="Use Dynamic ATR")
userATRPeriod = input.int(7, title="ATR Period (if not using dynamic)", minval=1)
defaultATR = timeframe.isminutes and timeframe.multiplier <= 2 ? 5 :
timeframe.isminutes and timeframe.multiplier <= 5 ? 7 : 10
atrPeriod = useDynamicATR ? defaultATR : userATRPeriod
// === TRADE TRACKING VARIABLES ===
var int lastSignalBar = 0
var int lastSignalType = 0 // 1 for long, -1 for short
var int entryBarIndex = 0
var bool inLongTrade = false
var bool inShortTrade = false
// DCA Tracking Variables
var int longEntryCount = 0
var int shortEntryCount = 0
var float longInitialEntryPrice = na
var float shortInitialEntryPrice = na
var float longEntryATR = na
var float shortEntryATR = na
var float long_stop_price = na
var float short_stop_price = na
// Signal Plotting Variables
var int lastLongPlotBar = 0
var int lastShortPlotBar = 0
// === CALCULATIONS ===
// Volume and Time Filters
volumeOk = volume >= minVolume
currentHour = hour(time)
timeWindow = currentHour >= tradingStartHour and currentHour <= tradingEndHour
// Additional Entry Filter: Volume Spike Condition
volumeSpike = volume > 1.2 * ta.sma(volume, 10)
// ATR & Volatility Calculations
atr = ta.atr(atrPeriod)
volatility = nz(atr / close, 0)
volatilityOk= volatility <= volatilityThreshold
// Adaptive MA Lengths
fastLengthAdaptive = math.round(fastLength / (1 + volatility))
slowLengthAdaptive = math.round(slowLength / (1 + volatility))
fastLengthSafe = math.max(1, not na(atr) ? fastLengthAdaptive : fastLength)
slowLengthSafe = math.max(1, not na(atr) ? slowLengthAdaptive : slowLength)
fastMA = ta.sma(close, fastLengthSafe)
slowMA = ta.sma(close, slowLengthSafe)
// RSI Calculation
rsi = ta.rsi(close, rsiLength)
rsiCrossover = ta.crossover(rsi, rsiOversold)
rsiCrossunder = ta.crossunder(rsi, rsiOverbought)
rsiLongOk = not useRSI or (rsiCrossover and rsi[rsiLookback] < 70)
rsiShortOk = not useRSI or (rsiCrossunder and rsi[rsiLookback] > 30)
// 15m Trend Filter
[fastMA15m, slowMA15m] = request.security(syminfo.tickerid, '15', [ta.sma(close, fastLength), ta.sma(close, slowLength)])
trend15m = fastMA15m > slowMA15m ? 1 : fastMA15m < slowMA15m ? -1 : 0
// Candlestick Patterns
isBullishEngulfing() =>
close[1] < open[1] and close > open and open < close[1] and close > open[1] and (close - open) > (open[1] - close[1]) * 0.8
isBearishEngulfing() =>
close[1] > open[1] and close < open and open > close[1] and close < open[1] and (open - close) > (close[1] - open[1]) * 0.8
// Pattern Strength Calculation
patternStrength(isBull) =>
bull = isBull ? 1 : 0
bear = isBull ? 0 : 1
volumeStrength = volume > ta.sma(volume, 10) ? 1 : 0
rangeStrength = (high - low) > ta.sma(high - low, 10) ? 1 : 0
strength = bull * (volumeStrength + rangeStrength) - bear * (volumeStrength + rangeStrength)
strength
bullStrength = patternStrength(true)
bearStrength = patternStrength(false)
// Detect Patterns
bullishEngulfingOccurred = ta.barssince(isBullishEngulfing()) <= patternLookback and bullStrength >= 1
bearishEngulfingOccurred = ta.barssince(isBearishEngulfing()) <= patternLookback and bearStrength <= -1
patternConflict = bullishEngulfingOccurred and bearishEngulfingOccurred
// MA Conditions with Trend & RSI Filters
maAbove = close > fastMA and fastMA > slowMA and close > close[1]
maBelow = close < fastMA and fastMA < slowMA and close < close[1]
trendLongOk = not useTrendFilter or trend15m >= 0
trendShortOk = not useTrendFilter or trend15m <= 0
// Signal Priority Logic
bullPattern = usePatterns and bullishEngulfingOccurred
bearPattern = usePatterns and bearishEngulfingOccurred
bullMA = maAbove and trendLongOk and rsiLongOk
bearMA = maBelow and trendShortOk and rsiShortOk
longCondition = false
shortCondition = false
if signalPriority == 'Pattern'
longCondition := bullPattern or (not bearPattern and bullMA)
shortCondition := bearPattern or (not bullPattern and bearMA)
else
longCondition := bullMA or (not bearMA and bullPattern)
shortCondition := bearMA or (not bullMA and bearPattern)
// Apply Filters and require volume spike for quality entries
longCondition := longCondition and volumeOk and volumeSpike and timeWindow and volatilityOk and not patternConflict
shortCondition := shortCondition and volumeOk and volumeSpike and timeWindow and volatilityOk and not patternConflict
// Update Trade Status
if strategy.position_size > 0
inLongTrade := true
inShortTrade := false
else if strategy.position_size < 0
inShortTrade := true
inLongTrade := false
else
inLongTrade := false
inShortTrade := false
// Entry Checks
canTrade = strategy.position_size == 0
validQuantity = fixedQuantity > 0
quantity = fixedQuantity
// Prevent Multiple Alerts Per Bar
var bool alertSent = false
if barstate.isnew
alertSent := false
// Cooldown Logic
var float lastExitTime = na
if strategy.position_size == 0 and strategy.position_size[1] != 0
lastExitTime := time
canEnter = na(lastExitTime) or ((time - lastExitTime) / 60000 >= cooldownMinutes)
// === ENTRY LOGIC ===
if canTrade and validQuantity and not alertSent and canEnter and barstate.isconfirmed
if longCondition and not shortCondition and (lastSignalBar != bar_index or lastSignalType != 1)
strategy.entry('Long', strategy.long, qty=quantity)
longInitialEntryPrice := close
longEntryATR := atr
longEntryCount := 1
alert('Enter Long', alert.freq_once_per_bar)
alertSent := true
lastSignalBar := bar_index
lastSignalType := 1
entryBarIndex := bar_index
else if shortCondition and not longCondition and (lastSignalBar != bar_index or lastSignalType != -1)
strategy.entry('Short', strategy.short, qty=quantity)
shortInitialEntryPrice := close
shortEntryATR := atr
shortEntryCount := 1
alert('Enter Short', alert.freq_once_per_bar)
alertSent := true
lastSignalBar := bar_index
lastSignalType := -1
entryBarIndex := bar_index
// === DCA LOGIC (IF ENABLED) ===
if useDCA
if strategy.position_size > 0 and longEntryCount < maxTotalEntries and bullMA and rsi < 70
nextDCALevel = longInitialEntryPrice - longEntryCount * longEntryATR * dcaMultiplier
if close <= nextDCALevel
strategy.entry('Long DCA ' + str.tostring(longEntryCount), strategy.long, qty=quantity)
longEntryCount := longEntryCount + 1
if strategy.position_size < 0 and shortEntryCount < maxTotalEntries and bearMA and rsi > 30
nextDCALevel = shortInitialEntryPrice + shortEntryATR * shortEntryCount * dcaMultiplier
if close >= nextDCALevel
strategy.entry('Short DCA ' + str.tostring(shortEntryCount), strategy.short, qty=quantity)
shortEntryCount := shortEntryCount + 1
// === RESET DCA VARIABLES ON EXIT ===
if strategy.position_size == 0 and strategy.position_size[1] != 0
longEntryCount := 0
shortEntryCount := 0
longInitialEntryPrice := na
shortInitialEntryPrice := na
longEntryATR := na
shortEntryATR := na
// === FIXED STOP-LOSS CALCULATION (WIDER INITIAL STOP) ===
long_stop_price := strategy.position_avg_price - atr * fixedStopMultiplier
short_stop_price := strategy.position_avg_price + atr * fixedStopMultiplier
// === ADJUST TRAILING POINTS BASED ON PROFIT ===
profitLong = strategy.position_size > 0 ? close - strategy.position_avg_price : 0
profitShort = strategy.position_size < 0 ? strategy.position_avg_price - close : 0
trailPointsMultAdjusted = profitLong > atr ? 0.3 : profitLong > atr * 0.66 ? 0.4 : trailPointsMult // For long positions
trailPointsMultAdjustedShort = profitShort > atr ? 0.3 : profitShort > atr * 0.66 ? 0.4 : trailPointsMult // For short positions
trailPointsLong = atr * trailPointsMultAdjusted
trailPointsShort = atr * trailPointsMultAdjustedShort
// === EXIT LOGIC ===
// On the entry bar, always use the fixed stop; thereafter, use a combination of fixed stop, trailing stop, and a profit target.
// Profit Target: For longs, exit at avg_entry + atr * profitTargetATRMult; for shorts, exit at avg_entry - atr * profitTargetATRMult.
if strategy.position_size > 0
if bar_index == entryBarIndex
if debugLogging
log.info("Long exit on entry bar: fixed stop applied. Price=" + str.tostring(close))
strategy.exit('Long Exit', 'Long', stop=long_stop_price)
else
if debugLogging
log.info("Long Trade: profit=" + str.tostring(profitLong) + ", ATR=" + str.tostring(atr))
strategy.exit('Long Exit', 'Long',
stop=long_stop_price,
limit = strategy.position_avg_price + atr * profitTargetATRMult,
trail_points=trailPointsLong,
trail_offset=atr * trailOffset)
if strategy.position_size < 0
if bar_index == entryBarIndex
if debugLogging
log.info("Short exit on entry bar: fixed stop applied. Price=" + str.tostring(close))
strategy.exit('Short Exit', 'Short', stop=short_stop_price)
else
if debugLogging
log.info("Short Trade: profit=" + str.tostring(profitShort) + ", ATR=" + str.tostring(atr))
strategy.exit('Short Exit', 'Short',
stop=short_stop_price,
limit = strategy.position_avg_price - atr * profitTargetATRMult,
trail_points=trailPointsShort,
trail_offset=atr * trailOffset)
// === FORCE CLOSE ON LAST BAR (OPTIONAL) ===
if barstate.islast
if strategy.position_size > 0
strategy.close('Long', comment='Forced Exit')
if strategy.position_size < 0
strategy.close('Short', comment='Forced Exit')
// === SIGNAL PLOTTING LOGIC ===
plotLongSignal = longCondition and canTrade and (bar_index - lastLongPlotBar >= minBarsBetweenSignals or lastLongPlotBar == 0)
plotShortSignal = shortCondition and canTrade and (bar_index - lastShortPlotBar >= minBarsBetweenSignals or lastShortPlotBar == 0)
if plotLongSignal
lastLongPlotBar := bar_index
if plotShortSignal
lastShortPlotBar := bar_index
// Define plotting conditions based on plotMode
plotLongShape = plotMode == 'Potential Signals' ? plotLongSignal : strategy.position_size > 0 and strategy.position_size[1] <= 0
plotShortShape = plotMode == 'Potential Signals' ? plotShortSignal : strategy.position_size < 0 and strategy.position_size[1] >= 0
// === VISUALIZATION ===
plot(fastMA, color=color.blue, linewidth=2, title='Fast MA')
plot(slowMA, color=color.red, linewidth=2, title='Slow MA')
var float longSL = na
var float shortSL = na
if strategy.position_size > 0
longSL := math.max(longSL, high - trailPointsLong)
else
longSL := na
plot(longSL, color=color.green, style=plot.style_stepline, title='Long SL')
if strategy.position_size < 0
shortSL := math.min(shortSL, low + trailPointsShort)
else
shortSL := na
plot(shortSL, color=color.red, style=plot.style_stepline, title='Short SL')
bgcolor(timeWindow ? color.new(color.blue, 95) : na, title="Trading Hours Highlight")
if plotLongShape
label.new(bar_index, low, "Buy", yloc=yloc.belowbar, color=color.green, textcolor=color.white, style=label.style_label_up)
if plotShortShape
label.new(bar_index, high, "Sell", yloc=yloc.abovebar, color=color.red, textcolor=color.white, style=label.style_label_down)
// === DEBUG TABLE ===
var table debugTable = table.new(position.top_right, 3, 10, bgcolor=color.rgb(0, 0, 0, 80), border_color=color.white, border_width=1)
if barstate.islast
table.cell(debugTable, 0, 0, 'Signal', text_color=color.rgb(168, 168, 168), bgcolor=color.rgb(50, 50, 50))
table.cell(debugTable, 1, 0, 'Status', text_color=color.rgb(168, 168, 168), bgcolor=color.rgb(50, 50, 50))
table.cell(debugTable, 2, 0, 'Priority', text_color=color.rgb(168, 168, 168), bgcolor=color.rgb(50, 50, 50))
table.cell(debugTable, 0, 1, 'MA Long', text_color=color.blue)
table.cell(debugTable, 1, 1, bullMA ? 'Yes' : 'No', text_color=bullMA ? color.green : color.red)
table.cell(debugTable, 2, 1, signalPriority == 'MA' ? 'High' : 'Low', text_color=color.white)
table.cell(debugTable, 0, 2, 'MA Short', text_color=color.blue)
table.cell(debugTable, 1, 2, bearMA ? 'Yes' : 'No', text_color=bearMA ? color.green : color.red)
table.cell(debugTable, 2, 2, signalPriority == 'MA' ? 'High' : 'Low', text_color=color.white)
table.cell(debugTable, 0, 3, 'Bull Pattern', text_color=color.blue)
table.cell(debugTable, 1, 3, bullPattern ? 'Yes' : 'No', text_color=bullPattern ? color.green : color.red)
table.cell(debugTable, 2, 3, signalPriority == 'Pattern' ? 'High' : 'Low', text_color=color.white)
table.cell(debugTable, 0, 4, 'Bear Pattern', text_color=color.blue)
table.cell(debugTable, 1, 4, bearPattern ? 'Yes' : 'No', text_color=bearPattern ? color.green : color.red)
table.cell(debugTable, 2, 4, signalPriority == 'Pattern' ? 'High' : 'Low', text_color=color.white)
table.cell(debugTable, 0, 5, 'Filters', text_color=color.rgb(168, 168, 168), bgcolor=color.rgb(50, 50, 50))
table.cell(debugTable, 1, 5, 'Status', text_color=color.rgb(168, 168, 168), bgcolor=color.rgb(50, 50, 50))
table.cell(debugTable, 2, 5, '', text_color=color.white, bgcolor=color.rgb(50, 50, 50))
table.cell(debugTable, 0, 6, 'Time Window', text_color=color.blue)
table.cell(debugTable, 1, 6, timeWindow ? 'OK' : 'Closed', text_color=timeWindow ? color.green : color.red)
table.cell(debugTable, 2, 6, str.tostring(currentHour) + 'h', text_color=color.white)
table.cell(debugTable, 0, 7, 'Volume', text_color=color.blue)
table.cell(debugTable, 1, 7, volumeOk ? 'OK' : 'Low', text_color=volumeOk ? color.green : color.red)
table.cell(debugTable, 2, 7, str.tostring(volume, '#'), text_color=color.white)
table.cell(debugTable, 0, 8, 'Volatility', text_color=color.blue)
table.cell(debugTable, 1, 8, volatilityOk ? 'OK' : 'High', text_color=volatilityOk ? color.green : color.red)
table.cell(debugTable, 2, 8, str.tostring(volatility * 100, '#.##') + '%', text_color=color.white)
table.cell(debugTable, 0, 9, 'Signals', text_color=color.blue)
table.cell(debugTable, 1, 9, longCondition and not shortCondition ? 'LONG' : shortCondition and not longCondition ? 'SHORT' : longCondition and shortCondition ? 'CONFLICT' : 'NONE', text_color=longCondition and not shortCondition ? color.green : shortCondition and not longCondition ? color.red : color.yellow)
table.cell(debugTable, 2, 9, canEnter ? alertSent ? 'Sent' : 'Ready' : 'Cooldown', text_color=canEnter ? alertSent ? color.yellow : color.green : color.gray)
// === PERFORMANCE DASHBOARD ===
var table dashboard = table.new(position.bottom_left, 3, 3, bgcolor=color.rgb(0, 0, 0, 80), border_color=color.white, border_width=1)
if barstate.islast
table.cell(dashboard, 0, 0, 'Position', text_color=color.rgb(168, 168, 168), bgcolor=color.rgb(50, 50, 50))
table.cell(dashboard, 1, 0, 'P/L', text_color=color.rgb(168, 168, 168), bgcolor=color.rgb(50, 50, 50))
table.cell(dashboard, 2, 0, 'Statistics', text_color=color.rgb(168, 168, 168), bgcolor=color.rgb(50, 50, 50))
table.cell(dashboard, 0, 1, strategy.position_size > 0 ? 'Long' : strategy.position_size < 0 ? 'Short' : 'Flat', text_color=strategy.position_size > 0 ? color.green : strategy.position_size < 0 ? color.red : color.blue)
table.cell(dashboard, 1, 1, str.tostring(strategy.netprofit, '#.##'), text_color=strategy.netprofit >= 0 ? color.green : color.red)
table.cell(dashboard, 2, 1, 'Win Rate', text_color=color.white)
table.cell(dashboard, 0, 2, strategy.position_size != 0 ? 'Bars: ' + str.tostring(bar_index - entryBarIndex) : '', text_color=color.white)
table.cell(dashboard, 1, 2, strategy.position_size != 0 ? 'Cooldown: ' + str.tostring(cooldownMinutes) + 'm' : '', text_color=color.white)
table.cell(dashboard, 2, 2, strategy.closedtrades > 0 ? str.tostring(strategy.wintrades / strategy.closedtrades * 100, '#.##') + '%' : 'N/A', text_color=color.white)
// === CHART TITLE ===
var table titleTable = table.new(position.bottom_right, 1, 1, bgcolor=color.rgb(0, 0, 0, 80), border_color=color.rgb(0, 50, 137), border_width=1)
table.cell(titleTable, 0, 0, "Dskyz - DAFE Trading Systems", text_color=color.rgb(159, 127, 255, 80), text_size=size.large)