Стратегия сглаженной скользящей средней полосы


Дата создания: 2023-12-11 14:48:35 Последнее изменение: 2023-12-11 14:48:35
Копировать: 2 Количество просмотров: 656
1
Подписаться
1621
Подписчики

Стратегия сглаженной скользящей средней полосы

Обзор

Эта стратегия является типичной стратегией слежения за трендом, построенной на основе использования скользящих скользящих средних и интеграции нескольких скользящих средних для реализации функции фильтрации тенденций в реальном времени.

Стратегический принцип

  1. Плавное отслеживание изменения цен с использованием плавных скользящих средних, путем создания плавных ценовых полос.
  2. Политика поддерживает ввод различных типов скользящих средних в качестве типов расчета скользящих средних, таких как EMA, SMMA, KAMA и т. д.
  3. Поддержка сглаживания этих скользящих средних в 1-5 раз, чтобы получить более гладкую ценовую полосу.
  4. При этом поддерживается использование бриндовых полос между ценами и скользящими средними, чтобы лучше улавливать изменения цен.
  5. Благодаря включенному дополнительному фильтру движущихся средних можно лучше отфильтровывать колебания и определять направление тренда. Фильтр также поддерживает различные типы движущихся средних.
  6. Автоматическое распознавание сигналов покупки и продажи в сочетании с индикаторами формовой идентификации.

Эта стратегия, которая захватывает ценовые тенденции путем построения гладких ценовых полос и интеграции фильтров для подтверждения направления тенденции с помощью движущихся средних, является типичной стратегией отслеживания тенденций. С помощью корректировки параметров можно гибко адаптироваться к различным видам рыночной среды с разными циклами.

Стратегические преимущества

  1. Строительство ценовых полос позволяет более плавно отслеживать тенденции изменения цен, эффективно снижая вероятность упущенных возможностей.
  2. Поддержка различных типов скользящих средних, позволяющих выбрать подходящие скользящие средние для различных периодов и разновидностей, повышая адаптивность стратегии.
  3. 1-5 раза сглаживания накладывания позволяет значительно улучшить способность отслеживать изменения цен и более точно улавливать переломные моменты тренда.
  4. Фильтр с подвижным средним эффективно уменьшает неэффективные сигналы и повышает коэффициент победы.
  5. Изменение длины скользящей средней может быть адаптировано к различным временным периодам и даже может быть проверено с помощью нескольких временных рамок, что еще больше повышает эффективность стратегии.
  6. С помощью черного стекла можно четко и интуитивно наблюдать за движением ценовой полосы.

Стратегический риск

  1. Следить за долгосрочными тенденциями сильнее, но плохо отслеживать и реагировать на краткосрочные колебания, легко создавать более неэффективные сигналы в шокирующих ситуациях.
  2. В условиях стремительного изменения цены в буре, скользящей вниз, скользящая средняя имеет некоторую задержку и может пропустить лучший момент входа.
  3. Многослойные скользящие средние могут быть слишком гладкими для изменения цены, что приводит к тому, что точка покупки и продажи не идентифицируются.
  4. Неправильная настройка параметров длины включенного скользящего среднего может привести к созданию большого количества ложных сигналов.

Решение проблемы:

  1. Сокращение длины скользящей средней соответствующим образом ускоряет реакцию на изменения цен.
  2. Регулируйте количество накладок, чтобы снизить вероятность переглаживания.
  3. Оптимизация и тестирование комбинаций скользящих средних, выбор оптимальных параметров.
  4. В сочетании с другими показателями проводится многократная проверка временных рамок для снижения уровня ложных сигналов.

Направление оптимизации стратегии

  1. Оптимизация комбинаций типов скользящих средних для тестирования оптимальных параметров.
  2. Тестирование оптимизации параметров длины скользящих средних для более широкого диапазона сортов и временных периодов.
  3. Попробуйте различные накладывания, чтобы найти оптимальную точку равновесия.
  4. Попробуйте добавить в качестве вспомогательного индикатора ленту Брин.
  5. В качестве фильтра используйте различные дополнительные скользящие средние.
  6. Проверка многократных временных рамок в сочетании с другими показателями

Подвести итог

Эта стратегия относится к типичным стратегиям слежения за тенденциями. Она постоянно отслеживает ценовые тенденции путем построения плавных движущихся средних поясов в сочетании с вспомогательными фильтрами, чтобы избежать неэффективных сигналов. Преимущество стратегии заключается в том, что построение плавных ценовых поясов позволяет лучше улавливать сдвиги ценовых тенденций. При этом существует определенный риск отставания.

Исходный код стратегии
/*backtest
start: 2023-12-03 00:00:00
end: 2023-12-10 00:00:00
period: 1h
basePeriod: 15m
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
*/

//@version=4
// Copyright (c) 2007-present Jurik Research and Consulting. All rights reserved.
// Copyright (c) 2018-present, Alex Orekhov (everget)
// Thanks to everget for code for more advanced moving averages
// Smooth Moving Average Ribbon [STRATEGY] @PuppyTherapy script may be freely distributed under the MIT license.
strategy( title="Smooth Moving Average Ribbon [STRATEGY] @PuppyTherapy", overlay=true )

// ---- CONSTANTS ----
lsmaOffset = 1
almaOffset = 0.85
almaSigma  = 6
phase = 2
power = 2

// ---- GLOBAL FUNCTIONS ----
kama(src, len)=>
    xvnoise = abs(src - src[1])
    nfastend = 0.666
    nslowend = 0.0645
    nsignal = abs(src - src[len])
    nnoise = sum(xvnoise, len)
    nefratio = iff(nnoise != 0, nsignal / nnoise, 0)
    nsmooth = pow(nefratio * (nfastend - nslowend) + nslowend, 2)
    nAMA = 0.0
    nAMA := nz(nAMA[1]) + nsmooth * (src - nz(nAMA[1]))

t3(src, len)=>
    xe1_1 = ema(src,    len)
    xe2_1 = ema(xe1_1,  len)
    xe3_1 = ema(xe2_1,  len)
    xe4_1 = ema(xe3_1,  len)
    xe5_1 = ema(xe4_1,  len)
    xe6_1 = ema(xe5_1,  len)
    b_1 = 0.7
    c1_1 = -b_1*b_1*b_1
    c2_1 = 3*b_1*b_1+3*b_1*b_1*b_1
    c3_1 = -6*b_1*b_1-3*b_1-3*b_1*b_1*b_1
    c4_1 = 1+3*b_1+b_1*b_1*b_1+3*b_1*b_1
    nT3Average_1 = c1_1 * xe6_1 + c2_1 * xe5_1 + c3_1 * xe4_1 + c4_1 * xe3_1
    
// The general form of the weights of the (2m + 1)-term Henderson Weighted Moving Average
getWeight(m, j) =>
    numerator = 315 * (pow(m + 1, 2) - pow(j, 2)) * (pow(m + 2, 2) - pow(j, 2)) * (pow(m + 3, 2) - pow(j, 2)) * (3 * pow(m + 2, 2) - 11 * pow(j, 2) - 16)
    denominator = 8 * (m + 2) * (pow(m + 2, 2) - 1) * (4 * pow(m + 2, 2) - 1) * (4 * pow(m + 2, 2) - 9) * (4 * pow(m + 2, 2) - 25)

    denominator != 0
         ? numerator / denominator
         : 0

hwma(src, termsNumber) =>
    sum = 0.0
    weightSum = 0.0
    
    termMult = (termsNumber - 1) / 2

    for i = 0 to termsNumber - 1
        weight = getWeight(termMult, i - termMult)
        sum := sum + nz(src[i]) * weight
        weightSum := weightSum + weight

    sum / weightSum

get_jurik(length, phase, power, src)=>
    phaseRatio = phase < -100 ? 0.5 : phase > 100 ? 2.5 : phase / 100 + 1.5
    beta = 0.45 * (length - 1) / (0.45 * (length - 1) + 2)
    alpha = pow(beta, power)
    jma = 0.0
    e0 = 0.0
    e0 := (1 - alpha) * src + alpha * nz(e0[1])
    e1 = 0.0
    e1 := (src - e0) * (1 - beta) + beta * nz(e1[1])
    e2 = 0.0
    e2 := (e0 + phaseRatio * e1 - nz(jma[1])) * pow(1 - alpha, 2) + pow(alpha, 2) * nz(e2[1])
    jma := e2 + nz(jma[1])

variant(src, type, len ) =>
    v1 = sma(src, len)                                                  // Simple
    v2 = ema(src, len)                                                  // Exponential
    v3 = 2 * v2 - ema(v2, len)                                          // Double Exponential
    v4 = 3 * (v2 - ema(v2, len)) + ema(ema(v2, len), len)               // Triple Exponential
    v5 = wma(src, len)                                                  // Weighted
    v6 = vwma(src, len)                                                 // Volume Weighted
    v7 = na(v5[1]) ? sma(src, len) : (v5[1] * (len - 1) + src) / len    // Smoothed
    v8 = wma(2 * wma(src, len / 2) - wma(src, len), round(sqrt(len)))   // Hull
    v9 = linreg(src, len, lsmaOffset)                                   // Least Squares
    v10 = alma(src, len, almaOffset, almaSigma)                         // Arnaud Legoux
    v11 = kama(src, len)                                                // KAMA
    ema1 = ema(src, len)
    ema2 = ema(ema1, len)
    v13 = t3(src, len)                                                  // T3
    v14 = ema1+(ema1-ema2)                                              // Zero Lag Exponential
    v15 = hwma(src, len)                                                // Henderson Moving average thanks to  @everget
    ahma = 0.0
    ahma := nz(ahma[1]) + (src - (nz(ahma[1]) + nz(ahma[len])) / 2) / len //Ahrens Moving Average 
    v16 = ahma
    v17 = get_jurik( len, phase, power, src) 
    type=="EMA"?v2 : type=="DEMA"?v3 : type=="TEMA"?v4 : type=="WMA"?v5 : type=="VWMA"?v6 :
     type=="SMMA"?v7 : type=="Hull"?v8 : type=="LSMA"?v9 : type=="ALMA"?v10 : type=="KAMA"?v11 :
     type=="T3"?v13 : type=="ZEMA"?v14 : type=="HWMA"?v15 : type=="AHMA"?v16 : type=="JURIK"?v17 : v1

smoothMA(o, h, l, c, maLoop, type, len) =>
	ma_o = 0.0
	ma_h = 0.0
	ma_l = 0.0
	ma_c = 0.0
	if maLoop == 1
		ma_o := variant(o, type, len)
		ma_h := variant(h, type, len)
		ma_l := variant(l, type, len)
		ma_c := variant(c, type, len)
	if maLoop == 2
		ma_o := variant(variant(o ,type, len),type, len)
		ma_h := variant(variant(h ,type, len),type, len)
		ma_l := variant(variant(l ,type, len),type, len)
		ma_c := variant(variant(c ,type, len),type, len)
	if maLoop == 3
		ma_o := variant(variant(variant(o ,type, len),type, len),type, len)
		ma_h := variant(variant(variant(h ,type, len),type, len),type, len)
		ma_l := variant(variant(variant(l ,type, len),type, len),type, len)
		ma_c := variant(variant(variant(c ,type, len),type, len),type, len)
	if maLoop == 4
		ma_o := variant(variant(variant(variant(o ,type, len),type, len),type, len),type, len)
		ma_h := variant(variant(variant(variant(h ,type, len),type, len),type, len),type, len)
		ma_l := variant(variant(variant(variant(l ,type, len),type, len),type, len),type, len)
		ma_c := variant(variant(variant(variant(c ,type, len),type, len),type, len),type, len)
	if maLoop == 5
		ma_o := variant(variant(variant(variant(variant(o ,type, len),type, len),type, len),type, len),type, len)
		ma_h := variant(variant(variant(variant(variant(h ,type, len),type, len),type, len),type, len),type, len)
		ma_l := variant(variant(variant(variant(variant(l ,type, len),type, len),type, len),type, len),type, len)
		ma_c := variant(variant(variant(variant(variant(c ,type, len),type, len),type, len),type, len),type, len)
    [ma_o, ma_h, ma_l, ma_c]

smoothHA( o, h, l, c ) =>
    hao = 0.0
    hac = ( o + h + l + c ) / 4
    hao := na(hao[1])?(o + c / 2 ):(hao[1] + hac[1])/2
    hah = max(h, max(hao, hac))
    hal = min(l, min(hao, hac))
	[hao, hah, hal, hac]

// ---- Main Ribbon ----
haSmooth   = input(true, title=" Use HA as source ? " )
length     = input(11, title=" MA1 Length", minval=1, maxval=1000)
maLoop     = input(3, title=" Nr. of MA1 Smoothings ", minval=1, maxval=5)
type       = input("EMA", title="MA Type", options=["SMA", "EMA", "DEMA", "TEMA", "WMA", "VWMA", "SMMA", "Hull", "LSMA", "ALMA", "KAMA", "ZEMA", "HWMA", "AHMA", "JURIK", "T3"])
haSmooth2  = input(true, title=" Use HA as source ? " )

// ---- Trend ----
ma_use    = input(true, title=" ----- Use MA Filter ( For Lower Timeframe Swings / Scalps ) ? ----- " )
ma_source = input(defval = close, title = "MA - Source", type = input.source)
ma_length = input(100,title="MA - Length", minval=1 )
ma_type   = input("SMA", title="MA - Type", options=["SMA", "EMA", "DEMA", "TEMA", "WMA", "VWMA", "SMMA", "Hull", "LSMA", "ALMA", "KAMA", "ZEMA", "HWMA", "AHMA", "JURIK", "T3"])
ma_useHA  = input(defval = false, title = "Use HA Candles as Source ?")
ma_rsl    = input(true, title = "Use Rising / Falling Logic ?" )

// ---- BODY SCRIPT ----
[ ha_open, ha_high, ha_low, ha_close ] = smoothHA(open, high, low, close)

_open_ma  = haSmooth ? ha_open : open
_high_ma  = haSmooth ? ha_high : high
_low_ma   = haSmooth ? ha_low : low
_close_ma = haSmooth ? ha_close : close

[ _open, _high, _low, _close ] = smoothMA( _open_ma, _high_ma, _low_ma, _close_ma, maLoop, type, length)
[ ha_open2, ha_high2, ha_low2, ha_close2 ] = smoothHA(_open, _high, _low, _close)

_open_ma2  = haSmooth2 ? ha_open2 : _open
_high_ma2  = haSmooth2 ? ha_high2 : _high
_low_ma2   = haSmooth2 ? ha_low2 : _low
_close_ma2 = haSmooth2 ? ha_close2 : _close

ribbonColor = _close_ma2 > _open_ma2 ? color.lime : color.red
p_open  = plot(_open_ma2,  title="Ribbon - Open",   color=ribbonColor, transp=70)
p_close = plot(_close_ma2, title="Ribbon - Close",  color=ribbonColor, transp=70)
fill(p_open, p_close, color = ribbonColor, transp = 40 )

// ----- FILTER

ma = 0.0
if ma_use == true
    ma := variant( ma_useHA ? ha_close : ma_source, ma_type,  ma_length )

maFilterShort = ma_use ? ma_rsl ? falling(ma,1) : ma_useHA ? ha_close : close < ma : true 
maFilterLong  = ma_use ? ma_rsl ? rising(ma,1) : ma_useHA ? ha_close : close > ma : true 


colorTrend = rising(ma,1) ? color.green : color.red
plot( ma_use ? ma : na, title="MA Trend",  color=colorTrend, transp=80, transp=70, linewidth = 5)

long     = crossover(_close_ma2, _open_ma2 ) and maFilterLong
short    = crossunder(_close_ma2, _open_ma2 ) and maFilterShort
closeAll = cross(_close_ma2, _open_ma2 )

plotshape( short , title="Short", color=color.red,  transp=80, style=shape.triangledown, location=location.abovebar, size=size.small)
plotshape( long ,  title="Long",  color=color.lime, transp=80, style=shape.triangleup,   location=location.belowbar, size=size.small)

//* Backtesting Period Selector | Component *//
//* Source: https://www.tradingview.com/script/eCC1cvxQ-Backtesting-Period-Selector-Component *//
testStartYear   = input(2018, "Backtest Start Year",minval=1980)
testStartMonth  = input(1, "Backtest Start Month",minval=1,maxval=12)
testStartDay    = input(1, "Backtest Start Day",minval=1,maxval=31)
testPeriodStart = timestamp(testStartYear,testStartMonth,testStartDay,0,0)
testStopYear    = 9999 //input(9999, "Backtest Stop Year",minval=1980)
testStopMonth   = 12 // input(12, "Backtest Stop Month",minval=1,maxval=12)
testStopDay     = 31 //input(31, "Backtest Stop Day",minval=1,maxval=31)
testPeriodStop  = timestamp(testStopYear,testStopMonth,testStopDay,0,0)
testPeriod() => time >= testPeriodStart and time <= testPeriodStop ? true : false

if testPeriod() and long
    strategy.entry( "long", strategy.long )

if testPeriod() and short
    strategy.entry( "short", strategy.short )
    
if closeAll
    strategy.close_all( when = closeAll )