Многофакторная количественная торговая стратегия


Дата создания: 2024-01-25 13:04:16 Последнее изменение: 2024-01-25 13:04:16
Копировать: 0 Количество просмотров: 634
1
Подписаться
1617
Подписчики

Многофакторная количественная торговая стратегия

Обзор

Стратегия является многофакторной количественной торговой стратегией, которая объединяет RSI, MACD, OBV, CCI, CMF, MFI и VWMACD в качестве различных технических показателей для автоматизированной количественной торговли акциями. Стратегия называется стратегия количественного многофакторного выбора.

Стратегический принцип

Основная логика стратегии заключается в том, чтобы судить о состоянии нескольких технических индикаторов и совершать покупку, когда несколько индикаторов посылают одновременно сигналы о покупке.

В частности, RSI, MACD, OBV, CCI, CMF, MFI и VWMACD в стратегии, чтобы обнаружить, есть ли они в виде нисходящего тренда, но значение показателя не упало, если это произойдет, это может указывать на предстоящую реверсию. В коде такой формы называется пустого целенаправленного куска, если несколько индикаторов одновременно пустого целенаправленного куска, то посылает окончательный сигнал покупки.

Кроме того, в стратегии также введена логика определения необычного объема торгов. Когда цена колеблется, но объем торгов не значительно увеличивается, то, скорее всего, это ложный прорыв, и тогда также появляется сигнал покупки.

В целом, эта стратегия повышает точность принятия решений, наблюдая за обратными сигналами нескольких технических показателей и объединяя аномальные суждения о количестве сделок, что является ключом к успеху количественной стратегии торговли.

Стратегические преимущества

Эта стратегия имеет следующие преимущества:

  1. Многофакторная модель, объединяющая сигналы семи часто используемых технических индикаторов, повышает точность принятия торговых решений.

  2. Введение обратного сигнала в переходе позволяет избежать обмана с помощью ложного прорыва и фильтрации недействительного сигнала.

  3. Применение падений, чтобы заранее определить момент, когда акции могут перевернуться вверх.

  4. Автоматизированная торговля, которая не требует человеческого вмешательства, значительно снижает операционные расходы.

  5. Логика стратегии понятна и проста, ее легко понять, изменить и оптимизировать.

Стратегический риск

Однако эта стратегия также несет в себе некоторые риски:

  1. Неправильное сочетание множественных факторов может привести к конфликту торговых сигналов. Необходимо тестировать и настраивать параметры каждого фактора, чтобы найти оптимальную конфигурацию.

  2. Обратная торговля сопряжена с определенным риском, существует вероятность того, что она может быть снова обращена вспять. Для контроля риска можно установить стоп-лосс.

  3. Показатель VOLUME может плохо работать для некоторых низколиквидных акций, в этом случае можно уменьшить вес VOLUME или исключить эту часть акций.

  4. При обратном тестировании данные хорошо адаптируются, в реальном времени может быть плохо. Для тестирования необходимо накопить больше данных в реальном времени.

Направление оптимизации стратегии

Эта стратегия может быть улучшена в следующих аспектах:

  1. Добавить или уменьшить некоторые технические показатели, чтобы найти оптимальную конфигурацию многофакторной модели.

  2. Для различных типов акций используются различные параметры или веса, чтобы сделать стратегию более целевой.

  3. Настройка динамического стоп-лосса, движение стоп-листов для блокировки прибыли и управления рисками.

  4. Выбор акций в конкретных сегментах в сочетании с информацией о отраслях, концепциях и т. Д.

  5. Включение алгоритмов машинного обучения для автоматической оптимизации параметров стратегии.

Подвести итог

В целом, эта стратегия представляет собой потенциальную стратегию количественного трейдинга. Она сочетает в себе сигналы различных технических показателей, дополненные количественным обратным суждением, что позволяет эффективно обнаруживать возможности для обратного обращения акций и автоматизировать торговлю. После оптимизации параметров и контроля риска, ожидается лучшая доходность.

Исходный код стратегии
/*backtest
start: 2023-01-18 00:00:00
end: 2024-01-24 00:00:00
period: 1d
basePeriod: 1h
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
*/

// This Pine Script™ code is subject to the terms of the Mozilla Public License 2.0 at https://mozilla.org/MPL/2.0/
// © mkose81

//@version=5
strategy("MK future stopsuz 40 alım (Sadece Long)", overlay=true, max_bars_back=4000,use_bar_magnifier= true,pyramiding=40)


// RSI Hesaplama
rsi = ta.rsi(close, 14)
float botRSI = na
botRSI := ta.pivotlow(5, 5)
botcRSI = 0
botcRSI := botRSI ? 5 : nz(botcRSI[1]) + 1

newbotRSI = ta.pivotlow(5, 0)
emptylRSI = true
if not na(newbotRSI) and newbotRSI < low[botcRSI]
    diffRSI = (newbotRSI - low[botcRSI]) / botcRSI
    llineRSI = newbotRSI - diffRSI
    for x = 1 to botcRSI - 1 by 1
        if close[x] < llineRSI
            emptylRSI := false
            break
        llineRSI -= diffRSI
    emptylRSI

// Pozitif Uyumsuzluk Alım Sinyali - RSI
alRSI = 0
if emptylRSI and not na(newbotRSI)
    if rsi[botcRSI] < rsi
        alRSI := 1

// MACD Hesaplama
[macd, signal, _] = ta.macd(close, 21, 55, 8)
float botMACD = na
botMACD := ta.pivotlow(5, 5)
botcMACD = 0
botcMACD := botMACD ? 5 : nz(botcMACD[1]) + 1

newbotMACD = ta.pivotlow(5, 0)
emptylMACD = true
if not na(newbotMACD) and newbotMACD < low[botcMACD]
    diffMACD = (newbotMACD - low[botcMACD]) / botcMACD
    llineMACD = newbotMACD - diffMACD
    for x = 1 to botcMACD - 1 by 1
        if close[x] < llineMACD
            emptylMACD := false
            break
        llineMACD -= diffMACD
    emptylMACD

// Pozitif Uyumsuzluk Alım Sinyali - MACD
alMACD = 0
if emptylMACD and not na(newbotMACD)
    if macd[botcMACD] < macd
        alMACD := 1
// OBV Hesaplama ve Uyumsuzluk Tespiti
obv = ta.cum(ta.change(close) > 0 ? volume : ta.change(close) < 0 ? -volume : 0)
float botOBV = na
botOBV := ta.pivotlow(5, 5)
botcOBV = 0
botcOBV := botOBV ? 5 : nz(botcOBV[1]) + 1

newbotOBV = ta.pivotlow(5, 0)
emptylOBV = true
if not na(newbotOBV) and newbotOBV < obv[botcOBV]
    diffOBV = (newbotOBV - obv[botcOBV]) / botcOBV
    llineOBV = newbotOBV - diffOBV
    for x = 1 to botcOBV - 1 by 1
        if obv[x] < llineOBV
            emptylOBV := false
            break
        llineOBV -= diffOBV
    emptylOBV

// Pozitif Uyumsuzluk Alım Sinyali - OBV
alOBV = 0
if emptylOBV and not na(newbotOBV)
    if obv[botcOBV] < obv
        alOBV := 1

// CCI Hesaplama ve Uyumsuzluk Tespiti
cci = ta.cci(close, 20)
float botCCI = na
botCCI := ta.pivotlow(5, 5)
botcCCI = 0
botcCCI := botCCI ? 5 : nz(botcCCI[1]) + 1

newbotCCI = ta.pivotlow(5, 0)
emptylCCI = true
if not na(newbotCCI) and newbotCCI < cci[botcCCI]
    diffCCI = (newbotCCI - cci[botcCCI]) / botcCCI
    llineCCI = newbotCCI - diffCCI
    for x = 1 to botcCCI - 1 by 1
        if cci[x] < llineCCI
            emptylCCI := false
            break
        llineCCI -= diffCCI
    emptylCCI

// Pozitif Uyumsuzluk Alım Sinyali - CCI
alCCI = 0
if emptylCCI and not na(newbotCCI)
    if cci[botcCCI] < cci
        alCCI := 1

// CMF Hesaplama
length = 20
mfm = ((close - low) - (high - close)) / (high - low)
mfv = mfm * volume
cmf = ta.sma(mfv, length) / ta.sma(volume, length)

float botCMF = na
botCMF := ta.pivotlow(5, 5)
botcCMF = 0
botcCMF := botCMF ? 5 : nz(botcCMF[1]) + 1

newbotCMF = ta.pivotlow(5, 0)
emptylCMF = true
if not na(newbotCMF) and newbotCMF < cmf[botcCMF]
    diffCMF = (newbotCMF - cmf[botcCMF]) / botcCMF
    llineCMF = newbotCMF - diffCMF
    for x = 1 to botcCMF - 1 by 1
        if cmf[x] < llineCMF
            emptylCMF := false
            break
        llineCMF -= diffCMF
    emptylCMF

// Pozitif Uyumsuzluk Alım Sinyali - CMF
alCMF = 0
if emptylCMF and not na(newbotCMF)
    if cmf[botcCMF] < cmf
        alCMF := 1

// MFI Hesaplama
lengthMFI = 14
mfi = ta.mfi(close, lengthMFI)

float botMFI = na
botMFI := ta.pivotlow(mfi, 5, 5)
botcMFI = 0
botcMFI := botMFI ? 5 : nz(botcMFI[1]) + 1

newbotMFI = ta.pivotlow(mfi, 5, 0)
emptylMFI = true
if not na(newbotMFI) and newbotMFI < mfi[botcMFI]
    diffMFI = (newbotMFI - mfi[botcMFI]) / botcMFI
    llineMFI = newbotMFI - diffMFI
    for x = 1 to botcMFI - 1 by 1
        if mfi[x] < llineMFI
            emptylMFI := false
            break
        llineMFI -= diffMFI
    emptylMFI

// Pozitif Uyumsuzluk Alım Sinyali - MFI
alMFI = 0
if emptylMFI and not na(newbotMFI)
    if mfi[botcMFI] < mfi
        alMFI := 1

// VWMACD Hesaplama
fastLength = 12
slowLength = 26
signalSmoothing = 9
vwmacd = ta.ema(close, fastLength) - ta.ema(close, slowLength)
signalLine = ta.ema(vwmacd, signalSmoothing)
histogram = vwmacd - signalLine
// VWMACD Uyumsuzluk Tespiti
float botVWMACD = na
botVWMACD := ta.pivotlow(histogram, 5, 5)
botcVWMACD = 0
botcVWMACD := botVWMACD ? 5 : nz(botcVWMACD[1]) + 1

newbotVWMACD = ta.pivotlow(histogram, 5, 0)
emptylVWMACD = true
if not na(newbotVWMACD) and newbotVWMACD < histogram[botcVWMACD]
    diffVWMACD = (newbotVWMACD - histogram[botcVWMACD]) / botcVWMACD
    llineVWMACD = newbotVWMACD - diffVWMACD
    for x = 1 to botcVWMACD - 1 by 1
        if histogram[x] < llineVWMACD
            emptylVWMACD := false
            break
        llineVWMACD -= diffVWMACD
    emptylVWMACD

// Pozitif Uyumsuzluk Alım Sinyali - VWMACD
alVWMACD = 0
if emptylVWMACD and not na(newbotVWMACD)
    if histogram[botcVWMACD] < histogram
        alVWMACD := 1
//Dipci indikator
lengthd= 130
coef = 0.2
vcoef = 2.5
signalLength = 5
smoothVFI = false

ma(x, y) =>
    smoothVFI ? ta.sma(x, y) : x

typical = hlc3
inter = math.log(typical) - math.log(typical[1])
vinter = ta.stdev(inter, 30)
cutoff = coef * vinter * close
vave = ta.sma(volume, lengthd)[1]
vmax = vave * vcoef
vc = volume < vmax ? volume : vmax  //min( volume, vmax )
mf = typical - typical[1]
iff_4 = mf < -cutoff ? -vc : 0
vcp = mf > cutoff ? vc : iff_4

vfi = ma(math.sum(vcp, lengthd) / vave, 3)
vfima = ta.ema(vfi, signalLength)
d = vfi - vfima

// Kullanıcı girdileri
volatilityThreshold = input.float(1.005, title="Volume Percentage Threshold")
pinThreshold = input.float(1.005, title="Deep Percentage Threshold")
// Hesaplamalar
volatilityPercentage = (high - low) / open
pinPercentage = close > open ? (high - close) / open : (close - low) / open
// Volatilite koşulu ve VFI ile filtreleme
voldip = volatilityPercentage >= volatilityThreshold or pinPercentage >= pinThreshold
volCondition = voldip and vfi< 0  // VFI değeri 0'dan küçükse volCondition aktif olacak





threeCommasEntryComment = input.string(title="3Commas Entry Comment", defval="")
threeCommasExitComment = input.string(title="3Commas Exit Comment", defval="")


takeProfitPerc = input.float(1, title="Take Profit Percentage (%)") / 100
fallPerc = input.float(5, title="Percentage for Additional Buy (%)") / 100
// Değişkenlerin tanımlanması
var float lastBuyPrice = na
var float tpPrice = na
var int lastTpBar = na

// Alım koşulları
longCondition = alRSI or alMACD or alOBV or alCCI or alCMF or alMFI or alVWMACD or volCondition
// Son alım fiyatını saklamak için değişken


// İlk alım stratejisi
if (longCondition and strategy.position_size == 0)
    strategy.entry("Long", strategy.long, comment=threeCommasEntryComment)
    lastBuyPrice := open

// İkinci ve sonraki alım koşulları (son alım fiyatının belirlenen yüzde altında)
if (open < lastBuyPrice * (1 - fallPerc) and strategy.position_size > 0)
    strategy.entry("Long Add", strategy.long, comment=threeCommasEntryComment)
    lastBuyPrice := open

// Kar alma fiyatını hesaplama ve strateji çıkışı
tp_price = strategy.position_avg_price * (1 + takeProfitPerc)
if strategy.position_size > 0
    strategy.exit("Exit Long", "Long", limit=tp_price, comment=threeCommasExitComment)
    strategy.exit("Exit Long Add", "Long Add", limit=tp_price, comment=threeCommasExitComment)
    tpPrice := na // Pozisyon kapandığında TP çizgisini sıfırla

// Kar alma seviyesi çizgisi çizme
plot(strategy.position_size > 0 ? tp_price : na, color=color.green, title="Take Profit Line")