
یہ حکمت عملی ایک جامع تجارتی نظام ہے جس میں گوسٹ چینل فلٹر اور بے ترتیب آر ایس آئی اشارے شامل ہیں۔ گوسٹ چینل کی سمت میں تبدیلی اور قیمت کی پوزیشن کے ذریعہ ، بے ترتیب آر ایس آئی کے ساتھ مل کر اوور خرید اوور فروخت سگنل کے ذریعہ تجارتی مواقع کی نشاندہی کی جاتی ہے۔ حکمت عملی میں ایک موافقت پذیر چینل کی تعمیر کے لئے پیچیدہ ریاضیاتی ماڈل کا استعمال کیا گیا ہے جو مارکیٹ کے شور کو مؤثر طریقے سے فلٹر کرنے اور قیمتوں میں اہم تبدیلیوں کو پکڑنے کے قابل ہے۔
حکمت عملی کی بنیادی منطق درج ذیل کلیدی اجزاء پر مبنی ہے:
اس حکمت عملی نے گوسٹ چینل فلٹرز اور بے ترتیب آر ایس آئی اشارے کے ساتھ مل کر ایک ایسا تجارتی نظام تشکیل دیا ہے جس میں خودکشی کی مضبوط صلاحیت ہے۔ گوسٹ چینل کی ریاضی کی بنیاد سگنل کی ہموار اور قابل اعتماد کی ضمانت دیتی ہے ، جبکہ بے ترتیب آر ایس آئی کے امتزاج سے انٹری ٹائمنگ کی درستگی میں مزید اضافہ ہوتا ہے۔ اس حکمت عملی کا بنیادی فائدہ مارکیٹ کے شور کو مؤثر طریقے سے فلٹر کرنے اور رجحانات کو درست طریقے سے پکڑنے میں ہے ، لیکن اس کے ساتھ ہی اس میں عددی اصلاح اور رسک مینجمنٹ کے مسائل پر بھی توجہ دینے کی ضرورت ہے۔ تجویز کردہ اصلاحی سمتوں کے ذریعہ ، حکمت عملی کی مجموعی کارکردگی میں مزید بہتری لانے کی گنجائش ہے۔
/*backtest
start: 2024-02-22 00:00:00
end: 2025-02-19 08:00:00
period: 1d
basePeriod: 1d
exchanges: [{"eid":"Binance","currency":"SOL_USDT"}]
*/
//@version=5
strategy(title="Gaussian Channel Strategy v3.0", overlay=true, calc_on_every_tick=false, initial_capital=1000, default_qty_type=strategy.percent_of_equity, default_qty_value=100, commission_type=strategy.commission.percent, commission_value=0.1, slippage=0, fill_orders_on_standard_ohlc=true)
//-----------------------------------------------------------------------------------------------------------------------------------------------------------------
// Gaussian Filter Functions (Must be declared first)
//-----------------------------------------------------------------------------------------------------------------------------------------------------------------
f_filt9x(_a, _s, _i) =>
var int _m2 = 0, var int _m3 = 0, var int _m4 = 0, var int _m5 = 0, var int _m6 = 0,
var int _m7 = 0, var int _m8 = 0, var int _m9 = 0, var float _f = .0
_x = 1 - _a
_m2 := _i == 9 ? 36 : _i == 8 ? 28 : _i == 7 ? 21 : _i == 6 ? 15 : _i == 5 ? 10 : _i == 4 ? 6 : _i == 3 ? 3 : _i == 2 ? 1 : 0
_m3 := _i == 9 ? 84 : _i == 8 ? 56 : _i == 7 ? 35 : _i == 6 ? 20 : _i == 5 ? 10 : _i == 4 ? 4 : _i == 3 ? 1 : 0
_m4 := _i == 9 ? 126 : _i == 8 ? 70 : _i == 7 ? 35 : _i == 6 ? 15 : _i == 5 ? 5 : _i == 4 ? 1 : 0
_m5 := _i == 9 ? 126 : _i == 8 ? 56 : _i == 7 ? 21 : _i == 6 ? 6 : _i == 5 ? 1 : 0
_m6 := _i == 9 ? 84 : _i == 8 ? 28 : _i == 7 ? 7 : _i == 6 ? 1 : 0
_m7 := _i == 9 ? 36 : _i == 8 ? 8 : _i == 7 ? 1 : 0
_m8 := _i == 9 ? 9 : _i == 8 ? 1 : 0
_m9 := _i == 9 ? 1 : 0
_f := math.pow(_a, _i) * nz(_s) + _i * _x * nz(_f[1]) - (_i >= 2 ? _m2 * math.pow(_x, 2) * nz(_f[2]) : 0) + (_i >= 3 ? _m3 * math.pow(_x, 3) * nz(_f[3]) : 0) - (_i >= 4 ? _m4 * math.pow(_x, 4) * nz(_f[4]) : 0) + (_i >= 5 ? _m5 * math.pow(_x, 5) * nz(_f[5]) : 0) - (_i >= 6 ? _m6 * math.pow(_x, 6) * nz(_f[6]) : 0) + (_i >= 7 ? _m7 * math.pow(_x, 7) * nz(_f[7]) : 0) - (_i >= 8 ? _m8 * math.pow(_x, 8) * nz(_f[8]) : 0) + (_i == 9 ? _m9 * math.pow(_x, 9) * nz(_f[9]) : 0)
f_pole(_a, _s, _i) =>
_f1 = f_filt9x(_a, _s, 1)
_f2 = _i >= 2 ? f_filt9x(_a, _s, 2) : 0.0
_f3 = _i >= 3 ? f_filt9x(_a, _s, 3) : 0.0
_f4 = _i >= 4 ? f_filt9x(_a, _s, 4) : 0.0
_f5 = _i >= 5 ? f_filt9x(_a, _s, 5) : 0.0
_f6 = _i >= 6 ? f_filt9x(_a, _s, 6) : 0.0
_f7 = _i >= 7 ? f_filt9x(_a, _s, 7) : 0.0
_f8 = _i >= 8 ? f_filt9x(_a, _s, 8) : 0.0
_f9 = _i == 9 ? f_filt9x(_a, _s, 9) : 0.0
_fn = _i == 1 ? _f1 : _i == 2 ? _f2 : _i == 3 ? _f3 : _i == 4 ? _f4 : _i == 5 ? _f5 : _i == 6 ? _f6 : _i == 7 ? _f7 : _i == 8 ? _f8 : _i == 9 ? _f9 : na
[_fn, _f1]
//-----------------------------------------------------------------------------------------------------------------------------------------------------------------
// Inputs
//-----------------------------------------------------------------------------------------------------------------------------------------------------------------
// Gaussian Channel
int poles = input.int(4, "Poles", 1, 9, group="Gaussian Channel")
int period = input.int(144, "Sampling Period", 2, group="Gaussian Channel")
float mult = input.float(1.414, "True Range Multiplier", group="Gaussian Channel")
bool reducedLag = input.bool(false, "Reduced Lag Mode", group="Gaussian Channel")
bool fastResponse = input.bool(false, "Fast Response Mode", group="Gaussian Channel")
// Stochastic RSI
smoothK = input.int(3, "K", 1, group="Stochastic RSI")
smoothD = input.int(3, "D", 1, group="Stochastic RSI")
lengthRSI = input.int(14, "RSI Length", 1, group="Stochastic RSI")
lengthStoch = input.int(14, "Stochastic Length", 1, group="Stochastic RSI")
//-----------------------------------------------------------------------------------------------------------------------------------------------------------------
// Calculations
//-----------------------------------------------------------------------------------------------------------------------------------------------------------------
// Gaussian Channel
beta = (1 - math.cos(4*math.asin(1)/period)) / (math.pow(1.414, 2/poles) - 1)
alpha = -beta + math.sqrt(math.pow(beta, 2) + 2*beta)
lag = (period - 1)/(2*poles)
src = hlc3
srcData = reducedLag ? src + (src - src[lag]) : src
trData = reducedLag ? ta.tr + (ta.tr - ta.tr[lag]) : ta.tr
[filterMain, filter1] = f_pole(alpha, srcData, poles)
[filterTRMain, filterTR1] = f_pole(alpha, trData, poles)
finalFilter = fastResponse ? (filterMain + filter1)/2 : filterMain
finalTR = fastResponse ? (filterTRMain + filterTR1)/2 : filterTRMain
hband = finalFilter + finalTR * mult
lband = finalFilter - finalTR * mult
// Stochastic RSI
rsi = ta.rsi(close, lengthRSI)
k = ta.sma(ta.stoch(rsi, rsi, rsi, lengthStoch), smoothK)
d = ta.sma(k, smoothD)
//-----------------------------------------------------------------------------------------------------------------------------------------------------------------
// Trading Logic
//-----------------------------------------------------------------------------------------------------------------------------------------------------------------
gaussianGreen = finalFilter > finalFilter[1]
priceAbove = close > hband
stochCondition = k > 80 or k < 20
longCondition = gaussianGreen and priceAbove and stochCondition
exitCondition = ta.crossunder(close, hband)
strategy.entry("Long", strategy.long, when=longCondition)
strategy.close("Long", when=exitCondition)
//-----------------------------------------------------------------------------------------------------------------------------------------------------------------
// Visuals
//-----------------------------------------------------------------------------------------------------------------------------------------------------------------
filterColor = finalFilter > finalFilter[1] ? #0aff68 : #ff0a5a
plot(finalFilter, "Filter", filterColor, 2)
plot(hband, "High Band", filterColor)
plot(lband, "Low Band", filterColor)
fill(plot(hband), plot(lband), color.new(filterColor, 90), "Channel Fill")