
Chiến lược này là một hệ thống giao dịch tổng hợp kết hợp các bộ lọc Gaussian channel và các chỉ số RSI ngẫu nhiên. Các cơ hội giao dịch được xác định thông qua sự thay đổi theo hướng và vị trí giá của Gaussian channel, kết hợp với tín hiệu mua quá mức của RSI ngẫu nhiên. Chiến lược sử dụng mô hình toán học phức tạp để xây dựng các kênh thích ứng, có thể lọc hiệu quả tiếng ồn thị trường và nắm bắt các biến động giá quan trọng.
Logic cốt lõi của chiến lược này dựa trên các thành phần chính sau:
Chiến lược này xây dựng một hệ thống giao dịch có khả năng thích ứng mạnh mẽ bằng cách kết hợp bộ lọc Gaussian channel và chỉ số RSI ngẫu nhiên. Cơ sở toán học của Gaussian channel đảm bảo sự trơn tru và đáng tin cậy của tín hiệu, trong khi sự kết hợp của RSI ngẫu nhiên làm tăng thêm độ chính xác của thời gian nhập cảnh. Ưu điểm chính của chiến lược nằm ở việc lọc hiệu quả tiếng ồn thị trường và nắm bắt chính xác xu hướng, nhưng cũng cần chú ý đến các vấn đề tối ưu hóa số và quản lý rủi ro.
/*backtest
start: 2024-02-22 00:00:00
end: 2025-02-19 08:00:00
period: 1d
basePeriod: 1d
exchanges: [{"eid":"Binance","currency":"SOL_USDT"}]
*/
//@version=5
strategy(title="Gaussian Channel Strategy v3.0", overlay=true, calc_on_every_tick=false, initial_capital=1000, default_qty_type=strategy.percent_of_equity, default_qty_value=100, commission_type=strategy.commission.percent, commission_value=0.1, slippage=0, fill_orders_on_standard_ohlc=true)
//-----------------------------------------------------------------------------------------------------------------------------------------------------------------
// Gaussian Filter Functions (Must be declared first)
//-----------------------------------------------------------------------------------------------------------------------------------------------------------------
f_filt9x(_a, _s, _i) =>
var int _m2 = 0, var int _m3 = 0, var int _m4 = 0, var int _m5 = 0, var int _m6 = 0,
var int _m7 = 0, var int _m8 = 0, var int _m9 = 0, var float _f = .0
_x = 1 - _a
_m2 := _i == 9 ? 36 : _i == 8 ? 28 : _i == 7 ? 21 : _i == 6 ? 15 : _i == 5 ? 10 : _i == 4 ? 6 : _i == 3 ? 3 : _i == 2 ? 1 : 0
_m3 := _i == 9 ? 84 : _i == 8 ? 56 : _i == 7 ? 35 : _i == 6 ? 20 : _i == 5 ? 10 : _i == 4 ? 4 : _i == 3 ? 1 : 0
_m4 := _i == 9 ? 126 : _i == 8 ? 70 : _i == 7 ? 35 : _i == 6 ? 15 : _i == 5 ? 5 : _i == 4 ? 1 : 0
_m5 := _i == 9 ? 126 : _i == 8 ? 56 : _i == 7 ? 21 : _i == 6 ? 6 : _i == 5 ? 1 : 0
_m6 := _i == 9 ? 84 : _i == 8 ? 28 : _i == 7 ? 7 : _i == 6 ? 1 : 0
_m7 := _i == 9 ? 36 : _i == 8 ? 8 : _i == 7 ? 1 : 0
_m8 := _i == 9 ? 9 : _i == 8 ? 1 : 0
_m9 := _i == 9 ? 1 : 0
_f := math.pow(_a, _i) * nz(_s) + _i * _x * nz(_f[1]) - (_i >= 2 ? _m2 * math.pow(_x, 2) * nz(_f[2]) : 0) + (_i >= 3 ? _m3 * math.pow(_x, 3) * nz(_f[3]) : 0) - (_i >= 4 ? _m4 * math.pow(_x, 4) * nz(_f[4]) : 0) + (_i >= 5 ? _m5 * math.pow(_x, 5) * nz(_f[5]) : 0) - (_i >= 6 ? _m6 * math.pow(_x, 6) * nz(_f[6]) : 0) + (_i >= 7 ? _m7 * math.pow(_x, 7) * nz(_f[7]) : 0) - (_i >= 8 ? _m8 * math.pow(_x, 8) * nz(_f[8]) : 0) + (_i == 9 ? _m9 * math.pow(_x, 9) * nz(_f[9]) : 0)
f_pole(_a, _s, _i) =>
_f1 = f_filt9x(_a, _s, 1)
_f2 = _i >= 2 ? f_filt9x(_a, _s, 2) : 0.0
_f3 = _i >= 3 ? f_filt9x(_a, _s, 3) : 0.0
_f4 = _i >= 4 ? f_filt9x(_a, _s, 4) : 0.0
_f5 = _i >= 5 ? f_filt9x(_a, _s, 5) : 0.0
_f6 = _i >= 6 ? f_filt9x(_a, _s, 6) : 0.0
_f7 = _i >= 7 ? f_filt9x(_a, _s, 7) : 0.0
_f8 = _i >= 8 ? f_filt9x(_a, _s, 8) : 0.0
_f9 = _i == 9 ? f_filt9x(_a, _s, 9) : 0.0
_fn = _i == 1 ? _f1 : _i == 2 ? _f2 : _i == 3 ? _f3 : _i == 4 ? _f4 : _i == 5 ? _f5 : _i == 6 ? _f6 : _i == 7 ? _f7 : _i == 8 ? _f8 : _i == 9 ? _f9 : na
[_fn, _f1]
//-----------------------------------------------------------------------------------------------------------------------------------------------------------------
// Inputs
//-----------------------------------------------------------------------------------------------------------------------------------------------------------------
// Gaussian Channel
int poles = input.int(4, "Poles", 1, 9, group="Gaussian Channel")
int period = input.int(144, "Sampling Period", 2, group="Gaussian Channel")
float mult = input.float(1.414, "True Range Multiplier", group="Gaussian Channel")
bool reducedLag = input.bool(false, "Reduced Lag Mode", group="Gaussian Channel")
bool fastResponse = input.bool(false, "Fast Response Mode", group="Gaussian Channel")
// Stochastic RSI
smoothK = input.int(3, "K", 1, group="Stochastic RSI")
smoothD = input.int(3, "D", 1, group="Stochastic RSI")
lengthRSI = input.int(14, "RSI Length", 1, group="Stochastic RSI")
lengthStoch = input.int(14, "Stochastic Length", 1, group="Stochastic RSI")
//-----------------------------------------------------------------------------------------------------------------------------------------------------------------
// Calculations
//-----------------------------------------------------------------------------------------------------------------------------------------------------------------
// Gaussian Channel
beta = (1 - math.cos(4*math.asin(1)/period)) / (math.pow(1.414, 2/poles) - 1)
alpha = -beta + math.sqrt(math.pow(beta, 2) + 2*beta)
lag = (period - 1)/(2*poles)
src = hlc3
srcData = reducedLag ? src + (src - src[lag]) : src
trData = reducedLag ? ta.tr + (ta.tr - ta.tr[lag]) : ta.tr
[filterMain, filter1] = f_pole(alpha, srcData, poles)
[filterTRMain, filterTR1] = f_pole(alpha, trData, poles)
finalFilter = fastResponse ? (filterMain + filter1)/2 : filterMain
finalTR = fastResponse ? (filterTRMain + filterTR1)/2 : filterTRMain
hband = finalFilter + finalTR * mult
lband = finalFilter - finalTR * mult
// Stochastic RSI
rsi = ta.rsi(close, lengthRSI)
k = ta.sma(ta.stoch(rsi, rsi, rsi, lengthStoch), smoothK)
d = ta.sma(k, smoothD)
//-----------------------------------------------------------------------------------------------------------------------------------------------------------------
// Trading Logic
//-----------------------------------------------------------------------------------------------------------------------------------------------------------------
gaussianGreen = finalFilter > finalFilter[1]
priceAbove = close > hband
stochCondition = k > 80 or k < 20
longCondition = gaussianGreen and priceAbove and stochCondition
exitCondition = ta.crossunder(close, hband)
strategy.entry("Long", strategy.long, when=longCondition)
strategy.close("Long", when=exitCondition)
//-----------------------------------------------------------------------------------------------------------------------------------------------------------------
// Visuals
//-----------------------------------------------------------------------------------------------------------------------------------------------------------------
filterColor = finalFilter > finalFilter[1] ? #0aff68 : #ff0a5a
plot(finalFilter, "Filter", filterColor, 2)
plot(hband, "High Band", filterColor)
plot(lband, "Low Band", filterColor)
fill(plot(hband), plot(lband), color.new(filterColor, 90), "Channel Fill")