资源加载中... loading...

Python版单平台均衡策略(教学)

Author: 发明者量化-小小梦, Date: 2020-02-03 22:43:38
Tags:

引用自JavaScript版单平台均衡策略

这个需要建仓,比如账户有5000块钱,跟1个币,如果币的价值大于账户的余额5000了并且差价超过阀值,比如币现在值6000块钱,就卖掉(6000-5000)/6000/2个币,说明币升值了,把钱兑换回来,如果币贬值了,比如4000块钱了,就买入(5000-4000)/4000/2个币, 币跌的时候买一些回来,如果再涨了,就再卖掉,好像天平一样,两边不同的对冲,所以我命名为均衡策略

文章地址: https://www.fmz.com/bbs-topic/4986


'''backtest
start: 2019-12-01 00:00:00
end: 2020-02-01 11:00:00
period: 1m
exchanges: [{"eid":"OKEX","currency":"BTC_USDT","stocks":1}]
'''

InitAccount = None

def CancelPendingOrders():
    ret = False
    while True:
        orders = _C(exchange.GetOrders)
        if len(orders) == 0 :
            return ret

        for j in range(len(orders)):
            exchange.CancelOrder(orders[j].Id)
            ret = True
            if j < len(orders) - 1:
                Sleep(Interval)
    return ret 

def onTick():
    acc = _C(exchange.GetAccount)
    ticker = _C(exchange.GetTicker)
    spread = ticker.Sell - ticker.Buy
    diffAsset = (acc.Balance - (acc.Stocks * ticker.Sell)) / 2
    ratio = diffAsset / acc.Balance
    LogStatus("ratio:", ratio, _D())
    if abs(ratio) < threshold:
        return False
    if ratio > 0 :
        buyPrice = _N(ticker.Sell + spread, ZPrecision)
        buyAmount = _N(diffAsset / buyPrice, XPrecision)
        if buyAmount < MinStock:
            return False
        exchange.Buy(buyPrice, buyAmount, diffAsset, ratio)
    else :
        sellPrice = _N(ticker.Buy - spread, ZPrecision)
        sellAmount = _N(-diffAsset / sellPrice, XPrecision)
        if sellAmount < MinStock:
            return False 
        exchange.Sell(sellPrice, sellAmount, diffAsset, ratio)
    return True

def main():
    global InitAccount, LoopInterval
    InitAccount = _C(exchange.GetAccount)
    LoopInterval = max(LoopInterval, 1)
    while True:
        if onTick():
            Sleep(1000)
            CancelPendingOrders()
            Log(_C(exchange.GetAccount))
        Sleep(LoopInterval * 1000)
template: strategy.tpl:40:21: executing "strategy.tpl" at <.api.GetStrategyListByName>: wrong number of args for GetStrategyListByName: want 7 got 6