Strategi perdagangan pembalikan berdasarkan indikator Stochastic RSI


Tanggal Pembuatan: 2023-09-13 18:00:13 Akhirnya memodifikasi: 2023-09-13 18:00:13
menyalin: 0 Jumlah klik: 744
1
fokus pada
1617
Pengikut

Strategi ini diberi nama strategi trading reverse based on Stochastic RSI. Strategi ini menggunakan indikator Stochastic RSI untuk mengidentifikasi overbought dan oversold, dan melakukan trading reverse jika terjadi reversal di zona ekstrim overbought dan oversold.

Stochastic RSI diperhitungkan dengan mengambil data RSI sebagai input untuk perhitungan Stochastic, dan mendapatkan sinyal K-line dan D-line. Ini mencerminkan RSI sendiri overbought dan oversold.

Logika transaksi adalah sebagai berikut:

  1. Perhitungan RSI cepat untuk menangkap overbought dan oversold.

  2. Sebuah rata-rata bergerak tertimbang terhadap RSI, mendapatkan sinyal K-line dalam RSI Stokastik.

  3. Pada garis K, saat melewati rata-rata bergerak, menghasilkan sinyal beli; saat melewati bawah, menghasilkan sinyal jual.

  4. Pada garis K mendekati zona overbought atau zona oversold, muncul sinyal reversal, pertimbangkan untuk melakukan reversal trading.

Keuntungan dari strategi ini adalah penggunaan indikator RSI Stokastik untuk mengidentifikasi titik balik. Namun, perlu mengoptimalkan kombinasi parameter dan mencegah overtrading. Strategi stop loss juga sangat penting.

Secara keseluruhan, Stochastic RSI adalah metode yang umum dan praktis untuk menentukan waktu reversal. Namun, pedagang masih perlu menjaga penilaian tren besar dan menghindari mengejar kenaikan dan penurunan dalam rebound.

Kode Sumber Strategi
/*backtest
start: 2023-09-05 00:00:00
end: 2023-09-12 00:00:00
period: 5m
basePeriod: 1m
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
*/

// This source code is subject to the terms of the Mozilla Public License 2.0 at https://mozilla.org/MPL/2.0/
// © MightyZinger
//@version=4
strategy(shorttitle="MZ SRSI",title="MightyZinger SRSI Strategy", overlay=false, pyramiding=1, calc_on_order_fills=true, calc_on_every_tick=true, default_qty_type=strategy.fixed, default_qty_value=5,commission_value=0.1)

//heiking ashi calculation
UseHAcandles    = input(true, title="Use Heikin Ashi Candles in Algo Calculations")
////
// === /INPUTS ===

// === BASE FUNCTIONS ===
haClose = UseHAcandles ? security(heikinashi(syminfo.tickerid), timeframe.period, close) : close
haOpen  = UseHAcandles ? security(heikinashi(syminfo.tickerid), timeframe.period, open) : open
haHigh  = UseHAcandles ? security(heikinashi(syminfo.tickerid), timeframe.period, high) : high
haLow   = UseHAcandles ? security(heikinashi(syminfo.tickerid), timeframe.period, low) : low


//Backtest dates
fromMonth = input(defval = 1,    title = "From Month",      type = input.integer, minval = 1, maxval = 12)
fromDay   = input(defval = 1,    title = "From Day",        type = input.integer, minval = 1, maxval = 31)
fromYear  = input(defval = 2021, title = "From Year",       type = input.integer, minval = 1970)
thruMonth = input(defval = 12,    title = "Thru Month",      type = input.integer, minval = 1, maxval = 12)
thruDay   = input(defval = 30,    title = "Thru Day",        type = input.integer, minval = 1, maxval = 31)
thruYear  = input(defval = 2021, title = "Thru Year",       type = input.integer, minval = 1970)

showDate  = input(defval = true, title = "Show Date Range", type = input.bool)

start     = timestamp(fromYear, fromMonth, fromDay, 00, 00)        // backtest start window
finish    = timestamp(thruYear, thruMonth, thruDay, 23, 59)        // backtest finish window
window()  => true       // create function "within window of time"

src = UseHAcandles ? haClose : input(close, title="Source")

TopBand = input(80, step=0.01)
LowBand = input(20, step=0.01)
lengthRSI = input(2, minval=1,title="RSI Length")
lengthMA = input(50, minval=1,title="MA Length")
lengthRSI_MA= input(5, minval=1,title="RSI MA Length")


//RSI Source
maType = input(title="MA Type", type=input.string, defval="LRC", options=["SMA","EMA","DEMA","TEMA","LRC","WMA","MF","VAMA","TMA","HMA", "JMA", "Kijun v2", "EDSMA","McGinley"])
rsiMaType = input(title="RSI MA Type", type=input.string, defval="TMA", options=["SMA","EMA","DEMA","TEMA","LRC","WMA","MF","VAMA","TMA","HMA", "JMA", "Kijun v2", "EDSMA","McGinley"])

//MA Function

//           Pre-reqs
//
tema(src, len) =>
    ema1 = ema(src, len)
    ema2 = ema(ema1, len)
    ema3 = ema(ema2, len)
    (3 * ema1) - (3 * ema2) + ema3
kidiv = input(defval=1,maxval=4,  title="Kijun MOD Divider")

jurik_phase = input(title="* Jurik (JMA) Only - Phase", type=input.integer, defval=3)
jurik_power = input(title="* Jurik (JMA) Only - Power", type=input.integer, defval=1)
volatility_lookback = input(10, title="* Volatility Adjusted (VAMA) Only - Volatility lookback length")
//                  MF
beta = input(0.8,minval=0,maxval=1,step=0.1,  title="Modular Filter, General Filter Only - Beta")
feedback = input(false, title="Modular Filter Only - Feedback")
z = input(0.5,title="Modular Filter Only - Feedback Weighting",step=0.1, minval=0, maxval=1)
//EDSMA
ssfLength = input(title="EDSMA - Super Smoother Filter Length", type=input.integer, minval=1, defval=20)
ssfPoles = input(title="EDSMA - Super Smoother Filter Poles", type=input.integer, defval=2, options=[2, 3])

//----
//                  EDSMA
get2PoleSSF(src, length) =>
    PI = 2 * asin(1)
    arg = sqrt(2) * PI / length
    a1 = exp(-arg)
    b1 = 2 * a1 * cos(arg)
    c2 = b1
    c3 = -pow(a1, 2)
    c1 = 1 - c2 - c3
    
    ssf = 0.0
    ssf := c1 * src + c2 * nz(ssf[1]) + c3 * nz(ssf[2])

get3PoleSSF(src, length) =>
    PI = 2 * asin(1)

    arg = PI / length
    a1 = exp(-arg)
    b1 = 2 * a1 * cos(1.738 * arg)
    c1 = pow(a1, 2)

    coef2 = b1 + c1
    coef3 = -(c1 + b1 * c1)
    coef4 = pow(c1, 2)
    coef1 = 1 - coef2 - coef3 - coef4

    ssf = 0.0
    ssf := coef1 * src + coef2 * nz(ssf[1]) + coef3 * nz(ssf[2]) + coef4 * nz(ssf[3])

//          MA Main function
ma(type, src, len) =>
    float result = 0
    if type=="TMA"
        result := sma(sma(src, ceil(len / 2)), floor(len / 2) + 1)
    if type=="MF"
        ts=0.,b=0.,c=0.,os=0.
        //----
        alpha = 2/(len+1)
        a = feedback ? z*src + (1-z)*nz(ts[1],src) : src
        //----
        b := a > alpha*a+(1-alpha)*nz(b[1],a) ? a : alpha*a+(1-alpha)*nz(b[1],a)
        c := a < alpha*a+(1-alpha)*nz(c[1],a) ? a : alpha*a+(1-alpha)*nz(c[1],a)
        os := a == b ? 1 : a == c ? 0 : os[1]
        //----
        upper = beta*b+(1-beta)*c
        lower = beta*c+(1-beta)*b 
        ts := os*upper+(1-os)*lower
        result := ts
    if type=="LRC"
        result := linreg(src, len, 0)
    if type=="SMA" // Simple
        result := sma(src, len)
    if type=="EMA" // Exponential
        result := ema(src, len)
    if type=="DEMA" // Double Exponential
        e = ema(src, len)
        result := 2 * e - ema(e, len)
    if type=="TEMA" // Triple Exponential
        e = ema(src, len)
        result := 3 * (e - ema(e, len)) + ema(ema(e, len), len)
    if type=="WMA" // Weighted
        result := wma(src, len)
    if type=="VAMA" // Volatility Adjusted
        /// Copyright © 2019 to present, Joris Duyck (JD)
        mid=ema(src,len)
        dev=src-mid
        vol_up=highest(dev,volatility_lookback)
        vol_down=lowest(dev,volatility_lookback)
        result := mid+avg(vol_up,vol_down)
    if type=="HMA" // Hull
        result := wma(2 * wma(src, len / 2) - wma(src, len), round(sqrt(len)))
    if type=="JMA" // Jurik
        /// Copyright © 2018 Alex Orekhov (everget)
        /// Copyright © 2017 Jurik Research and Consulting.
        phaseRatio = jurik_phase < -100 ? 0.5 : jurik_phase > 100 ? 2.5 : jurik_phase / 100 + 1.5
        beta = 0.45 * (len - 1) / (0.45 * (len - 1) + 2)
        alpha = pow(beta, jurik_power)
        jma = 0.0
        e0 = 0.0
        e0 := (1 - alpha) * src + alpha * nz(e0[1])
        e1 = 0.0
        e1 := (src - e0) * (1 - beta) + beta * nz(e1[1])
        e2 = 0.0
        e2 := (e0 + phaseRatio * e1 - nz(jma[1])) * pow(1 - alpha, 2) + pow(alpha, 2) * nz(e2[1])
        jma := e2 + nz(jma[1])
        result := jma
    if type=="Kijun v2"
        kijun = avg(lowest(len), highest(len))//, (open + close)/2)
        conversionLine = avg(lowest(len/kidiv), highest(len/kidiv))
        delta = (kijun + conversionLine)/2
        result :=delta
    if type=="McGinley"
        mg = 0.0
        mg := na(mg[1]) ? ema(src, len) : mg[1] + (src - mg[1]) / (len * pow(src/mg[1], 4))
        result :=mg
    if type=="EDSMA"
    
        zeros = src - nz(src[2])
        avgZeros = (zeros + zeros[1]) / 2
        
        // Ehlers Super Smoother Filter 
        ssf = ssfPoles == 2
             ? get2PoleSSF(avgZeros, ssfLength)
             : get3PoleSSF(avgZeros, ssfLength)
        
        // Rescale filter in terms of Standard Deviations
        stdev = stdev(ssf, len)
        scaledFilter = stdev != 0
             ? ssf / stdev
             : 0
        
        alpha = 5 * abs(scaledFilter) / len
        
        edsma = 0.0
        edsma := alpha * src + (1 - alpha) * nz(edsma[1])
        result :=  edsma
    result


//Indicator
hline(TopBand, color=color.red,linestyle=hline.style_dotted, linewidth=2)
hline(LowBand, color=color.green, linestyle=hline.style_dashed, linewidth=2)

// RSI Definition
rsiSource = ma(maType, src , lengthMA)
frsi = rsi(rsiSource, lengthRSI)
fsma = ma(rsiMaType, frsi , lengthRSI_MA)

plot(frsi,title='frsi', color= color.lime, linewidth=3)
fsmaColor=color.new(color.red, 80)
plot(fsma,title='fsma', color= fsmaColor , linewidth=3, style=plot.style_area)

//Background
bgcolor(frsi > fsma ? color.lime : color.orange, 80)

longcondition = crossover (frsi , fsma)
shortcondition = crossunder(frsi , fsma)


////////////////////////////////
//if (longcondition)
//    strategy.entry("BUY", strategy.long, when = window())
    
//if (shortcondition)
//    strategy.close("SELL", strategy.short, when = window())

strategy.entry(id="long", long = true, when = longcondition and window())
strategy.close("long", when = shortcondition and window())