Menggabungkan strategi Simple Moving Average dan Adaptive Moving Average


Tanggal Pembuatan: 2023-09-14 18:14:34 Akhirnya memodifikasi: 2023-09-14 18:14:34
menyalin: 0 Jumlah klik: 698
1
fokus pada
1617
Pengikut

Menggabungkan strategi Simple Moving Average dan Adaptive Moving Average

Artikel ini akan membahas strategi trading kuantitatif yang menggunakan kombinasi Simple Moving Average (SMA) dan Adaptive Moving Average (ALMA). Strategi ini menggabungkan beberapa indikator teknis secara bersamaan untuk membentuk sinyal trading masuk dan keluar pasar dengan menetapkan parameter yang berbeda.

  1. Prinsip Strategi

Inti dari strategi ini adalah kombinasi antara SMA dan ALMA yang menggunakan pengaturan parameter yang berbeda. SMA adalah indikator pelacakan tren yang sangat umum, yang menunjukkan arah dan intensitas tren harga dengan menghitung rata-rata harga akuntansi penutupan dalam jangka waktu tertentu. ALMA mirip dengan SMA, yang juga rata-rata harga sejarah, tetapi menambahkan dua parameter yang dapat disesuaikan, α dan σ, yang membuatnya lebih sensitif terhadap perubahan pasar daripada SMA dengan mengendalikan parameter.

Strategi ini pertama-tama menghitung tiga SMA, masing-masing mewakili tren jangka pendek, menengah, dan panjang. Selain itu, tiga ALMA, yang mewakili garis rata-rata harga di bawah dimensi waktu yang berbeda, dihitung.

Selain itu, strategi ini juga memperkenalkan Relative Strength Index (RSI) untuk membantu menilai overbought dan oversold. Ketika RSI lebih tinggi dari batas overbought yang ditetapkan, dianggap sebagai overbought pasar, dan bahkan jika SMA dan ALMA membentuk sinyal beli, itu mungkin membawa petunjuk yang keliru. Demikian pula, ketika RSI lebih rendah dari batas oversold, bahkan jika indikator menunjukkan sinyal jual, mungkin kehilangan kesempatan untuk bangkit.

Pengaturan parameter yang digunakan secara komprehensif dari berbagai indikator SMA, ALMA, dan RSI, kombinasi silang antara indikator parameter yang berbeda, dapat membentuk sinyal strategi perdagangan yang relatif sensitif. Selain itu, penilaian overbought dan oversold yang didukung oleh indikator RSI dapat lebih mengoptimalkan waktu masuk dan mengurangi probabilitas setoran.

Kedua, keunggulan strategi

Keuntungan terbesar dari strategi ini adalah penggunaan kombinasi parameter indikator yang fleksibel. Sama seperti SMA dan ALMA, parameter dapat disesuaikan secara fleksibel untuk mewakili bentuk garis rata yang berbeda. RSI juga dapat mengontrol frekuensi sinyal dengan menyesuaikan parameter. Kombinasi indikator ini saling melengkapi untuk membentuk sinyal perdagangan yang dapat mengoptimalkan pilihan waktu masuk.

ALMA meningkatkan sensitivitas terhadap perubahan pasar dibandingkan dengan indikator SMA tunggal, sehingga dapat merespons lebih cepat. Penghakiman tambahan RSI juga lebih jauh menghindari mengikuti sinyal garis rata secara buta.

Keuntungan lain adalah bahwa strategi memiliki banyak sumber sinyal. Kombinasi SMA dan ALMA yang berinteraksi dalam dimensi waktu yang berbeda memberikan referensi multi-lapisan untuk strategi. Ini dapat memfilter kebisingan / sinyal palsu ke tingkat tertentu dari kebisingan acak di pasar, membuat sinyal lebih dapat diandalkan.

Secara keseluruhan, parameter strategi ini fleksibel, sinyal outputnya stabil, dan cocok untuk perdagangan kuantitatif dari berbagai varietas.

Ketiga, potensi risiko

Meskipun ada beberapa keuntungan dari strategi ini, ada beberapa risiko yang perlu diperhatikan dalam praktiknya.

Pertama adalah masalah overoptimisasi yang ditimbulkan oleh pengaturan indikator. SMA, ALMA dan RSI dapat mengatur parameter secara bebas, tetapi pengaturan yang tidak tepat dapat menjadi overoptimisasi, dan tidak dapat beradaptasi dengan perubahan struktural pasar jangka panjang. Ini memerlukan pengaturan parameter yang hati-hati sesuai dengan karakteristik varietas yang berbeda, tidak dapat mengejar efek jangka pendek.

Kedua, sinyal strategi mungkin terlambat. Meskipun ALMA merespon lebih cepat dari SMA, ada keterlambatan tertentu. Dalam pasar yang berubah dengan cepat, ini dapat menyebabkan kehilangan waktu masuk yang optimal.

Akhirnya, persilangan yang sulit untuk dinilai yang disebabkan oleh kombinasi multi-indikator juga perlu diperhatikan. Dalam beberapa kasus, indikator yang berbeda dapat menunjukkan sinyal yang bertentangan. Ini perlu diselesaikan berdasarkan aturan prioritas yang jelas dari pengalaman.

Kesimpulannya, strategi ini tidak sempurna dan dalam praktiknya masih perlu terus disesuaikan dan dioptimalkan. Namun, pengaturan parameter yang fleksibel dan keunggulan kombinasi multi-indikator membuatnya menjadi pilihan strategi kuantitatif yang dapat diterapkan dalam jangka panjang.

Empat isi, ringkasan

Artikel ini membahas strategi perdagangan kuantitatif yang menggunakan kombinasi SMA, ALMA dan RSI. Strategi ini menghasilkan sinyal perdagangan yang sensitif terhadap pasar melalui kombinasi indikator yang fleksibel. Ini memiliki kemampuan adaptasi dan penyaringan kebisingan yang lebih kuat daripada indikator tunggal.

Kode Sumber Strategi
/*backtest
start: 2023-09-06 00:00:00
end: 2023-09-13 00:00:00
period: 5m
basePeriod: 1m
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
*/

//The plotchar UP/DOWN Arrows  is the crossover of the fastest MA and fastest IIR MAs
//
//The dots at the bottom are the two simple averages crossing over
//
//The count over/under the candles is the count of bars that the SMAs on their
//respective resolution are fanning out.
//
//The colored background indicates a squeeze, lime=kinda tight : green=very tight squeeze.  based on the 3 IIRs
//
//To answer my own question in a forum, looking at the code, i couldn't figure out how to get it from another timeframe
//and run the same calculations with the same results.  My answer in the end was to scale the chosen MA length
//in the corresponding CurrentPeriod/ChosenMAPeriod proportion.  This results in the same line in the same place when browsing through the
//different time resolutions.  Somebody might find this invaluable
//
//The counts are for MA's fanning out, or going parabolic.  Theres IIRs, Almas, one done of the other.  A lot.  
//The arrows above and below bars are from standard RSI numbers for OB/OS
//
//The IIRs changes color depending on their slope, which can be referenced easily with a variable.
//
//The backgrond on a bar-by-bar basis is colored when 2 sets of moving averages are in a squeeze, aka
//when price is consolidating.  
//
//This aims to help the trader combine conditions and entry criteria of the trade and explore these options visually.  
//They detail things from all time-frames on the current one.  I prefer it because of the fractal nature of price-action, both large and small,
//either yesterday or last year.  For best results, go long in short-term trades when the long-term trend is also up.
//and other profitable insights.  This is also a great example of an automation algorith.  
//
//The pretty ribbon is my script called 'Trading With Colors'. Use them together for fanciest results.  55/233 is my Fib Cross (golden/death)  Compare it to the classic 50/200 if
//you get bored.  I believe it simply works better, at least for Crypto.
//
//Evidently, I am a day-trader.  But this yields higher profits on larger time-frames anyways, so do play around with it. Find what works for you.

//Thanks and credit for code snippets goes to:
//matryskowal
//ChrisMoody, probably twice
//Alex Orekhov (everget)
//author=LucF and midtownsk8rguy, for PineCoders
//If you use code from this, real quick search for perhaps the original and give them a shoutout too.  I may have missed something

//Author: Sean Duffy
//@version=4
strategy(title = "Combination Parabolic MA/IIR/ALMA Strategy",
         shorttitle = "MA-QuickE", 
         overlay = true, 
         backtest_fill_limits_assumption = 0, 
         default_qty_type = strategy.cash, 
         default_qty_value = 1000, 
         initial_capital = 1000,
         currency = currency.USD,
         linktoseries = true)
        //  calc_on_order_fills = true,
        //  calc_on_every_tick = true,
// Input Variables
showFIBMAs = input(false, type=input.bool, title="═══════════════ Show Fibby MAs ═══════════════")
maRes = input(960, type=input.integer, title="MA-Cross Resolution")
mal1 = input(8, type=input.integer, title="MA#1 Length")
mal2 = input(13, type=input.integer, title="MA#2 Length")
mal3 = input(34, type=input.integer, title="MA#3 Length")
loosePercentClose = input(1.1, type=input.float, title="SMA LooseSqueeze Percent")
showIIRs = input(false, type=input.bool, title="═══════════════════ Show IIRs ═══════════════════")
iirRes = input(60, type=input.integer, title="IIR Resolution")
percentClose = input(title="IIR Squeeze PercentClose", type=input.float, defval=.8)
iirlength1 = input(title="IIR Length 1", type=input.integer, defval=34)
iirlength2 = input(title="IIR Length 2", type=input.integer, defval=144)//input(title="ATR Period", type=input.integer, defval=1)
iirlength3 = input(title="IIR Length 3", type=input.integer, defval=720)//input(title="ATR Period", type=input.integer, defval=1)
showIIR1 = input(true, type=input.bool, title="Show IIR1")
showIIR2 = input(true, type=input.bool, title="Show IIR2")
showIIR3 = input(true, type=input.bool, title="Show IIR3")
showCounts = input(true, type=input.bool, title="═════════════ Show Parabolic MA Counts ════════════")
showSignals = input(true, type=input.bool, title="══════════════ Show Buy/Sell Signals ══════════════")
showBackground = input(true, type=input.bool, title="══════════════ Show Background Colors ══════════════")
//runStrategy = input(true, type=input.bool, title="══════════════ Run Strategy  ══════════════")
debug = input(false, type=input.bool, title="══════════════ Show Debug ══════════════")

barLookbackPeriod = input(title="══ Bar Lookback Period ══", type=input.integer, defval=5)
percentageLookbackPeriod = input(title="══ Percentage Lookback Period ══", type=input.integer, defval=1)

bullcolor = color.green
bearcolor = color.red
color bgcolor = na

var bool slope1Green = na
var bool slope2Green = na
var bool slope3Green = na

var bool buySignal = na
var bool sellSignal = na
var bool bigbuySignal = na
var bool bigsellSignal = na
bool smbuySignal = false
bool smsellSignal = false
var bool insqueeze = na
var bool intightsqueeze = na
var bool infastsqueeze = na
var bool awaitingEntryIn = false

// My counting variables
var int count1 = 0
var float madist1 = 0
var int count2 = 0
var float madist2 = 0
var int sinceSmSignal = 0

var entryPrice = 0.0
var entryBarIndex = 0
var stopLossPrice = 0.0
// var updatedEntryPrice = 0.0
// var alertOpenPosition = false
// var alertClosePosition = false
// var label stopLossPriceLabel = na
// var line stopLossPriceLine = na
positionType = "LONG" // Strategy type, and the only current option

hasOpenPosition = strategy.opentrades != 0
hasNoOpenPosition = strategy.opentrades == 0

strategyClose() =>
    if (hasOpenPosition)
        if positionType == "LONG"
            strategy.close("LONG", when=true)
        else 
            strategy.close("SHORT", when=true)
strategyOpen() =>
    if (hasNoOpenPosition)
        if positionType == "LONG"
            strategy.entry("LONG", strategy.long, when=true)
        else 
            strategy.entry("SHORT", strategy.short, when=true)
checkEntry() =>
    buysignal = false
    if (hasNoOpenPosition)
        strategyOpen()
        buysignal := true
    // if (slope1Green and (trend1Green or trend2Green) and awaitingEntryIn and hasNoOpenPosition)
    //     strategyOpen()
    //     buysignal := true
    buysignal
checkExit() =>
    sellsignal = false
    // if (trend1Green == false and trend2Green == false) // to later have quicker exit strategy
    //     sellsignal := true
    //     strategyClose()
    if (hasOpenPosition)
        sellsignal := true
        strategyClose()
    sellsignal

multiplier(_adjRes, _adjLength) => // returns adjusted length
    multiplier = _adjRes/timeframe.multiplier
    round(_adjLength*multiplier)
    
    
//reset the var variables before new calculations
buySignal := false
sellSignal := false
smbuySignal := false
smsellSignal := false
bigbuySignal := false
bigsellSignal := false

ma1 = sma(close, multiplier(maRes, mal1))
ma2 = sma(close, multiplier(maRes, mal2))
ma3 = sma(close, multiplier(maRes, mal3))


madist1 := abs(ma1 - ma2)
madist2 := abs(ma1 - ma3) // check if MA's are fanning/going parabolic
if (ma1 >= ma2 and ma2 >= ma3 and madist1[0] > madist1[1]) //and abs(dataB - dataC >= madist2)  // dataA must be higher than b, and distance between gaining, same with C
    count1 := count1 + 1
else 
    count1 := 0
if (ma1 <= ma2 and ma2 <= ma3 and madist1[0] > madist1[1])  //<= madist2 and dataB <= dataC) //and abs(dataB - dataC >= madist2)  // dataA must be higher than b, and distance between gaining, same with C
    count2 := count2 + 1
else 
    count2 := 0


crossoverAB = crossover(ma1, ma2) 
crossunderAB = crossunder(ma1, ma2)

plot(showFIBMAs ? ma1 : na, linewidth=3)
plot(showFIBMAs ? ma2 : na)
plot(showFIBMAs ? ma3 : na)


// Fast Squeese Check WORK IN PROGRESS
// 
float singlePercent = close / 100 
if max(madist1, madist2) <= singlePercent*loosePercentClose
    bgcolor := color.yellow
    infastsqueeze := true
else
    infastsqueeze := false



// IIR MOVING AVERAGE
f(a) => a[0] // fixes mutable error
iirma(iirlength, iirsrc) =>
    cf = 2*tan(2*3.14159*(1/iirlength)/2)
    a0 = 8 + 8*cf + 4*pow(cf,2) + pow(cf,3)
    a1 = -24 - 8*cf + 4*pow(cf,2) + 3*pow(cf,3)
    a2 = 24 - 8*cf - 4*pow(cf,2) + 3*pow(cf,3)
    a3 = -8 + 8*cf - 4*pow(cf,2) + pow(cf,3)
    //----
    c = pow(cf,3)/a0
    d0 = -a1/a0
    d1 = -a2/a0
    d2 = -a3/a0
    //----
    out = 0.
    out := nz(c*(iirsrc + iirsrc[3]) + 3*c*(iirsrc[1] + iirsrc[2]) + d0*out[1] + d1*out[2] + d2*out[3],iirsrc)
    f(out)


iirma1 = iirma(multiplier(iirRes, iirlength1), close)
iirma2 = iirma(multiplier(iirRes, iirlength2), close)
iirma3 = iirma(multiplier(iirRes, iirlength3), close)

// adjusts length for current resolution now, length is lengthened/shortened accordingly, upholding exact placement of lines
// iirmaD1 = security(syminfo.tickerid, tostring(iirRes), iirma1, barmerge.gaps_on, barmerge.lookahead_on)
// iirmaD2 = security(syminfo.tickerid, tostring(iirRes), iirma2, barmerge.gaps_on, barmerge.lookahead_on)
// iirmaD3 = security(syminfo.tickerid, tostring(iirRes), iirma3, barmerge.gaps_on, barmerge.lookahead_on)

slope1color = slope1Green ? color.lime : color.blue
slope2color = slope2Green ? color.lime : color.blue
slope3color = slope3Green ? color.lime : color.blue

plot(showIIR1 and showIIRs ? iirma1 : na, title="IIR1", color=slope1color, linewidth=2, transp=30)
plot(showIIR2 and showIIRs ? iirma2 : na, title="IIR2", color=slope2color, linewidth=3, transp=30)
plot(showIIR3 and showIIRs ? iirma3 : na, title="IIR3", color=slope3color, linewidth=4, transp=30)

// checks slope of IIRs to create a boolean variable and and color it differently
if (iirma1[0] >= iirma1[1])
    slope1Green := true
else
    slope1Green := false
if (iirma2[0] >= iirma2[1])
    slope2Green := true
else
    slope2Green := false
if (iirma3[0] >= iirma3[1])
    slope3Green := true
else
    slope3Green := false

// calculate space between IIRs and then if the price jumps above both
//float singlePercent = close / 100  // = a single percent
var float distIIR1 = na
var float distIIR2 = na
distIIR1 := abs(iirma1 - iirma2)
distIIR2 := abs(iirma1 - iirma3)

if (distIIR1[0] < percentClose*singlePercent and close[0] >= iirma1[0])
    if close[0] >= iirma2[0] and close[0] >= iirma3[0]
        bgcolor := color.green
        insqueeze := true
        intightsqueeze := true
    else
        bgcolor := color.lime
        insqueeze := true
        intightsqueeze := false
else
    insqueeze := false
    intightsqueeze := false


// if (true)//sinceSmSignal > 0) //  cutting down on fastest MAs noise
//     sinceSmSignal := sinceSmSignal + 1
//     if (crossoverAB)
//         //checkEntry()
//         //smbuySignal := true
//         sinceSmSignal := 0
//     if (crossunderAB) // and all NOT greennot (slope1Green and slope2Green and slope3Green)
//         //checkExit()
//         //smsellSignal := true
//         sinceSmSignal := 0
// else
//     sinceSmSignal := sinceSmSignal + 1


f_draw_infopanel(_x, _y, _line, _text, _color)=>
    _rep_text = ""
    for _l = 0 to _line
        _rep_text := _rep_text + "\n"
    _rep_text := _rep_text + _text
    var label _la = na
    label.delete(_la)
    _la := label.new(
         x=_x, y=_y, 
         text=_rep_text, xloc=xloc.bar_time, yloc=yloc.price, 
         color=color.black, style=label.style_labelup, textcolor=_color, size=size.normal)

posx = timenow + round(change(time)*60)
posy = highest(50)

// CONSTRUCTION ZONE
// TODO:  program way to eliminate noise and false signals
// MAYBEDO: program it to differentiate between a moving average bump and a cross
//          I think the best way would be to calculate the tangent line... OR
//          Take the slope of both going back a couple bars and if it's close enough, its a bounce off
//          and an excellent entry signal
// program in quickest exit, 2 bars next to eachother both closing under, as to avoid a single wick from
// prompting to close the trade
// Some other time, have it move SMA up or down depending on whether trending up or down.  Then use those MA crosses

//THIS CHECKS THE SLOPE FROM CURRENT PRICE TO BACK 10 BARS
checkSlope(_series) =>  (_series[0]/_series[10])*100 // it now returns it as a percentage

doNewX = input(true, type=input.bool, title="══════════ Show misc MA Cross Strategy ══════════")

iirX = input(13, title="IIRx Length: ", type=input.integer)
iirXperiod = input(21, title="IIRx Period/TF: ", type=input.integer)

iirX2 = input(144, title="IIRx2 Length: ", type=input.integer)
iirX2period = input(233, title="IIRx2 Period/TF: ", type=input.integer) //15

almaXperiod = input(defval=21, title="Alma of IIR1 Period: ", type=input.integer)
almaXalpha = input(title="Alma Alpha Value: ", defval=.99, maxval=.99, type=input.float)
almaXsigma = input(title="Alma Sigma Value: ", defval=8, type=input.float)

iirmaOTF = iirma(multiplier(iirXperiod, iirX), close)
iirma2OTF = iirma(multiplier(iirX2period, iirX2), close)
smaOTF = alma(iirmaOTF, almaXperiod, almaXalpha, almaXsigma) // maybe dont touch, its precise  // I took the ALMA of the IIRMA, and i hope thats not cheating ;)

// I could have removed this.  the multiplier function adjusts the length to fit the current timeframe while displaying the same
// smaXOTF = security(syminfo.tickerid, smaXperiod, smaOTF, barmerge.gaps_on, barmerge.lookahead_on)
// iirmaXOTF = security(syminfo.tickerid, iirXperiod, iirmaOTF, barmerge.gaps_on, barmerge.lookahead_on)
// iirmaX2OTF = security(syminfo.tickerid, iirX2period, iirma2OTF, barmerge.gaps_on, barmerge.lookahead_on)
plot(doNewX ? smaOTF : na, title="FastMA X-Over :  ", color=color.blue, linewidth=1, transp=40)
plot(doNewX ? iirmaOTF : na, title="IIR MAx :  ", color=color.purple, linewidth=1, transp=30)
plot(doNewX ? iirma2OTF : na, title="IIR MAx :  ", color=color.purple, linewidth=2, transp=20)

iirma2Up = iirma2OTF[0] > iirma2OTF[1] // just another slope up/down variable. 

//calculate spaces between averages
distiiralma = abs(iirmaOTF - smaOTF)

crossoverFast = crossover(iirmaOTF[0], smaOTF[0]) // and (iirmaOTF[1] <= smaOTF[1])
crossunderFast = crossunder(iirmaOTF[0], smaOTF[0]) // and (iirmaOTF[1] >= smaOTF[1])

if (crossoverFast and iirma2Up == true) // and (count1 != 0))// or close[0] < (lowest(barLookbackPeriod) + singlePercent*3))) // must be at most a few percent up from a recent low.  Avoid buying highs :P
    buySignal := true
    strategyOpen()
    // if (slope1Green and slope2Green and slope3Green and infastsqueeze == false)
    //     checkEntry()
if (crossunderFast)
    sellSignal := true
    checkExit()

// I feel like I didn't cite the OG author for this panel correctly. I hope I did, but there are extentions of his/her work in multiple places.
// I could have gotten it confused.
if (debug)
    f_draw_infopanel(posx, posy, 18, "distiiralma from IIR: " + tostring(distiiralma), color.lime)
    //f_draw_infopanel(posx, posy, 16, "distiirs: " + tostring(distiirX1), color.lime)
    f_draw_infopanel(posx, posy, 14, "Value of iirmaOTF: " + tostring(iirmaOTF), color.lime)
    f_draw_infopanel(posx, posy, 6, "slope X: " + tostring(abs(100 - checkSlope(iirmaOTF))), color.lime)
    f_draw_infopanel(posx, posy, 12, "value of smaOTF: " + tostring(smaOTF), color.lime)
    f_draw_infopanel(posx, posy, 6, "slopeAlma: " + tostring(abs(100 - checkSlope(smaOTF))), color.lime)
    f_draw_infopanel(posx, posy, 2, "slopeIIR2 " + tostring(abs(100 - checkSlope(iirma2OTF))), color.lime)
    f_draw_infopanel(posx, posy, 2, "slopeIIR2 " + tostring(abs(100 - checkSlope(iirma2OTF))), color.lime)


// I kept this separate because it discludes the calculations.  Its hard to hold a train of thought while fishing for the right section
bgcolor(showBackground ? bgcolor : na)
plotshape(showSignals ? buySignal : na, location=location.bottom, style=shape.circle, text="", size=size.tiny, color=color.blue, transp=60)
plotshape(showSignals ? sellSignal : na, location=location.bottom, style=shape.circle, text="", size=size.tiny, color=color.red, transp=60)
plotchar(showSignals and smbuySignal, title="smBuy", location=location.belowbar, char='↑', size=size.tiny, color=color.green, transp=0)
plotchar(showSignals and smsellSignal, title="smSell", location=location.abovebar, char='↓', size=size.tiny, color=color.orange, transp=0)

// can not display a variable. Can only match the count to a corresponding plotchar
// to display a non-constant variable, use the debug box, which was so kindly offered up by our community.
plotchar(showCounts and count1==1, title='', char='1', location=location.belowbar, color=#2c9e2c, transp=0)
plotchar(showCounts and count1==2, title='', char='2', location=location.belowbar, color=#2c9e2c, transp=0)
plotchar(showCounts and count1==3, title='', char='3', location=location.belowbar, color=#2c9e2c, transp=0)
plotchar(showCounts and count1==4, title='', char='4', location=location.belowbar, color=#2c9e2c, transp=0)
plotchar(showCounts and count1==5, title='', char='5', location=location.belowbar, color=#2c9e2c, transp=0)
plotchar(showCounts and count1==6, title='', char='6', location=location.belowbar, color=#2c9e2c, transp=0)
plotchar(showCounts and count1==7, title='', char='7', location=location.belowbar, color=#2c9e2c, transp=0)
plotchar(showCounts and count1==8, title='', char='8', location=location.belowbar, color=#2c9e2c, transp=0)
plotchar(showCounts and count1==9, title='', char='9', location=location.belowbar, color=#2c9e2c, transp=0)
plotchar(showCounts and count1>=10, title='', char='$', location=location.belowbar, color=#2c9e2c, transp=0)
    
plotchar(showCounts and count2==1, title='', char='1', location=location.abovebar, color=#e91e63, transp=0)
plotchar(showCounts and count2==2, title='', char='2', location=location.abovebar, color=#e91e63, transp=0)
plotchar(showCounts and count2==3, title='', char='3', location=location.abovebar, color=#e91e63, transp=0)
plotchar(showCounts and count2==4, title='', char='4', location=location.abovebar, color=#e91e63, transp=0)
plotchar(showCounts and count2==5, title='', char='5', location=location.abovebar, color=#e91e63, transp=0)
plotchar(showCounts and count2==6, title='', char='6', location=location.abovebar, color=#e91e63, transp=0)
plotchar(showCounts and count2==7, title='', char='7', location=location.abovebar, color=#e91e63, transp=0)
plotchar(showCounts and count2==8, title='', char='8', location=location.abovebar, color=#e91e63, transp=0)
plotchar(showCounts and count2==9, title='', char='9', location=location.abovebar, color=#e91e63, transp=0)
plotchar(showCounts and count2>=10, title='', char='$', location=location.abovebar, color=#e91e63, transp=0)

showRSIind = input(true, type=input.bool, title="═══════════════════ Show RSI Arrows ═══════════════════")
// Get user input
rsiSource = input(title="RSI Source", type=input.source, defval=close)
rsiLength = input(title="RSI Length", type=input.integer, defval=14)
rsiOverbought = input(title="RSI Overbought Level", type=input.integer, defval=80)
rsiOversold = input(title="RSI Oversold Level", type=input.integer, defval=20)
// Get RSI value
rsiValue = rsi(rsiSource, rsiLength)
isRsiOB = rsiValue >= rsiOverbought
isRsiOS = rsiValue <= rsiOversold
// Plot signals to chart
plotshape(isRsiOB, title="Overbought", location=location.abovebar, color=color.red, transp=0, style=shape.triangledown)
plotshape(isRsiOS, title="Oversold", location=location.belowbar, color=color.green, transp=0, style=shape.triangleup)

//reset the var variables before new calculations
buySignal := false
sellSignal := false
smbuySignal := false
smsellSignal := false
bigbuySignal := false
bigsellSignal := false