
この戦略は,ナダラヤ-ワトソン・コア・リグレーションとATRダイナミック波段を組み合わせた自己適応トレンド追跡システムである.これは,合理的な二次コア関数によって価格トレンドを予測し,ATRベースのダイナミックなサポートと抵抗を活用して取引機会を識別する.システムは,構成可能なリグレーションウィンドウと重量パラメータによって市場の正確なモデリングを実現する.
策略の核心は,Nadaraya-Watson方法に基づく非参数核帰帰帰であり,合理二次核関数を使用して価格序列を平滑に処理する.帰帰は設定された初期バーから計算され,lookback window ((h) と相対重量 (® の2つの鍵パラメータによってフィット程度を制御する.同時にATR指標を組み合わせて,上下帯をそれぞれ帰帰推定値加減ATRの倍数として構成するダイナミック波段を構成する.システムは,波段と価格の交差によって取引シグナルを誘発する - 価格が下帯を突破すると多し,突破すると空きをする.トレンド判断は,価格の変動率や交差メカニズムに基づいて行われ,色彩変化によって直観的に表示される.
この戦略は,統計学的な学習方法と技術分析を組み合わせて,理論的な基礎がしっかりした実用的な取引システムを構築している.その自在な特性と構成性は,異なる市場環境に適応できるようにする.しかし,使用時にはパラメータ最適化とリスク管理に注意する必要がある.継続的な改善と最適化により,この戦略は,実際の取引において重要な役割を果たす見込みである.
/*backtest
start: 2025-01-18 00:00:00
end: 2025-02-17 00:00:00
period: 1h
basePeriod: 1h
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
*/
// This source code is subject to the terms of the Mozilla Public License 2.0 at https://mozilla.org/MPL/2.0/
// © Lupown
//@version=5
strategy("Nadaraya-Watson non repainting Strategy", overlay=true) // PARAMETER timeframe ODSTRÁNENÝ
//--------------------------------------------------------------------------------
// INPUTS
//--------------------------------------------------------------------------------
src = input.source(close, 'Source')
h = input.float(8., 'Lookback Window', minval=3., tooltip='The number of bars used for the estimation. This is a sliding value that represents the most recent historical bars. Recommended range: 3-50')
r = input.float(8., 'Relative Weighting', step=0.25, tooltip='Relative weighting of time frames. As this value approaches zero, the longer time frames will exert more influence on the estimation. As this value approaches infinity, the behavior of the Rational Quadratic Kernel will become identical to the Gaussian kernel. Recommended range: 0.25-25')
x_0 = input.int(25, "Start Regression at Bar", tooltip='Bar index on which to start regression. The first bars of a chart are often highly volatile, and omission of these initial bars often leads to a better overall fit. Recommended range: 5-25')
showMiddle = input.bool(true, "Show middle band")
smoothColors = input.bool(false, "Smooth Colors", tooltip="Uses a crossover based mechanism to determine colors. This often results in less color transitions overall.", inline='1', group='Colors')
lag = input.int(2, "Lag", tooltip="Lag for crossover detection. Lower values result in earlier crossovers. Recommended range: 1-2", inline='1', group='Colors')
lenjeje = input.int(32, "ATR Period", tooltip="Period to calculate upper and lower band", group='Bands')
coef = input.float(2.7, "Multiplier", tooltip="Multiplier to calculate upper and lower band", group='Bands')
//--------------------------------------------------------------------------------
// ARRAYS & VARIABLES
//--------------------------------------------------------------------------------
float y1 = 0.0
float y2 = 0.0
srcArray = array.new<float>(0)
array.push(srcArray, src)
size = array.size(srcArray)
//--------------------------------------------------------------------------------
// KERNEL REGRESSION FUNCTIONS
//--------------------------------------------------------------------------------
kernel_regression1(_src, _size, _h) =>
float _currentWeight = 0.
float _cumulativeWeight = 0.
for i = 0 to _size + x_0
y = _src[i]
w = math.pow(1 + (math.pow(i, 2) / ((math.pow(_h, 2) * 2 * r))), -r)
_currentWeight += y * w
_cumulativeWeight += w
[_currentWeight, _cumulativeWeight]
[currentWeight1, cumulativeWeight1] = kernel_regression1(src, size, h)
yhat1 = currentWeight1 / cumulativeWeight1
[currentWeight2, cumulativeWeight2] = kernel_regression1(src, size, h - lag)
yhat2 = currentWeight2 / cumulativeWeight2
//--------------------------------------------------------------------------------
// TREND & COLOR DETECTION
//--------------------------------------------------------------------------------
// Rate-of-change-based
bool wasBearish = yhat1[2] > yhat1[1]
bool wasBullish = yhat1[2] < yhat1[1]
bool isBearish = yhat1[1] > yhat1
bool isBullish = yhat1[1] < yhat1
bool isBearishChg = isBearish and wasBullish
bool isBullishChg = isBullish and wasBearish
// Crossover-based (for "smooth" color changes)
bool isBullishCross = ta.crossover(yhat2, yhat1)
bool isBearishCross = ta.crossunder(yhat2, yhat1)
bool isBullishSmooth = yhat2 > yhat1
bool isBearishSmooth = yhat2 < yhat1
color c_bullish = input.color(#3AFF17, 'Bullish Color', group='Colors')
color c_bearish = input.color(#FD1707, 'Bearish Color', group='Colors')
color colorByCross = isBullishSmooth ? c_bullish : c_bearish
color colorByRate = isBullish ? c_bullish : c_bearish
color plotColor = smoothColors ? colorByCross : colorByRate
// Middle Estimate
plot(showMiddle ? yhat1 : na, "Rational Quadratic Kernel Estimate", color=plotColor, linewidth=2)
//--------------------------------------------------------------------------------
// UPPER / LOWER BANDS
//--------------------------------------------------------------------------------
upperjeje = yhat1 + coef * ta.atr(lenjeje)
lowerjeje = yhat1 - coef * ta.atr(lenjeje)
plotUpper = plot(upperjeje, "Rational Quadratic Kernel Upper", color=color.rgb(0, 247, 8), linewidth=2)
plotLower = plot(lowerjeje, "Rational Quadratic Kernel Lower", color=color.rgb(255, 0, 0), linewidth=2)
//--------------------------------------------------------------------------------
// SYMBOLS & ALERTS
//--------------------------------------------------------------------------------
plotchar(ta.crossover(close, upperjeje), char="🥀", location=location.abovebar, size=size.tiny)
plotchar(ta.crossunder(close, lowerjeje), char="🍀", location=location.belowbar, size=size.tiny)
// Alerts for Color Changes (estimator)
alertcondition(smoothColors ? isBearishCross : isBearishChg, title="Bearish Color Change", message="Nadaraya-Watson: {{ticker}} ({{interval}}) turned Bearish ▼")
alertcondition(smoothColors ? isBullishCross : isBullishChg, title="Bullish Color Change", message="Nadaraya-Watson: {{ticker}} ({{interval}}) turned Bullish ▲")
// Alerts when price crosses upper and lower band
alertcondition(ta.crossunder(close, lowerjeje), title="Price close under lower band", message="Nadaraya-Watson: {{ticker}} ({{interval}}) crossed under lower band 🍀")
alertcondition(ta.crossover(close, upperjeje), title="Price close above upper band", message="Nadaraya-Watson: {{ticker}} ({{interval}}) Crossed above upper band 🥀")
//--------------------------------------------------------------------------------
// STRATEGY LOGIC (EXAMPLE)
//--------------------------------------------------------------------------------
if ta.crossunder(close, lowerjeje)
// zatvoriť short
strategy.close("Short")
// otvoriť long
strategy.entry("Long", strategy.long)
if ta.crossover(close, upperjeje)
// zatvoriť long
strategy.close("Long")
// otvoriť short
strategy.entry("Short", strategy.short)