저는 발명가 플랫폼에 자주 접속하는데, 항상 보물을 발견합니다. 오늘 21살 청년을 발견했습니다.트렌드 전략저는 원저자의 정교하고 완벽한 코드 구조와 높은 유연성에 감탄합니다. 원래 전략은 JS 버전인데, Python 사용자들의 편의를 위해 다시 작성되었습니다.
솔직히 말해서, 많은 초보자들이 퀀트 트레이딩을 처음 시작할 때 여러 가지 우회로를 거칩니다. 주문 실패, 부실한 위험 관리로 인한 손실, 전략 재시작 후 데이터 손실과 같은 문제에 자주 직면합니다. 나중에 저는 좋은 프레임워크의 중요성을 깨달았고, 이를 통해 많은 함정을 피할 수 있습니다. 이 트렌드 전략 프레임워크는 정말 귀중한 도구입니다. 단순한 트레이딩 전략을 넘어, 주문 입력, 손절매 주문, 데이터 관리와 같은 기본적이면서도 중요한 기능을 제공하는 도구 상자에 가깝습니다. “언제 매수해야 할지”와 “언제 매도해야 할지”라는 핵심 질문에만 집중하면 됩니다. 게다가 이 프레임워크는 매우 개방적이어서 지수이동평균(EMA)을 MACD, RSI 또는 원하는 다른 지표로 쉽게 교체할 수 있습니다. 추세를 따라가고 싶으신가요? 문제없습니다. 평균 회귀를 시도하고 싶으신가요? 여러 지표를 결합하고 싶으신가요? 물론입니다. 이러한 유연성은 매우 유용하며, 동일한 코드를 수정하여 다양한 아이디어를 실험해 볼 수 있습니다.
오늘 이 프레임워크를 공유해 드리고, 퀀트 투자를 고민하시는 분들께 도움이 되기를 바랍니다. 아래는 이 프레임워크의 각 구성 요소에 대한 자세한 소개이며, 여러분께 도움이 되실 것으로 생각합니다.
다중 상품 거래 프레임워크에서 사용되는 여러 독립적인 기능과 달리, 이 프레임워크는 클래스 형식을 사용하여 전략의 다양한 부분을 구성하고 관리합니다. 이러한 객체 지향 설계는 코드 유지 관리성과 확장성을 향상시킬 뿐만 아니라, 전략 구성 요소를 더욱 모듈화하여 후속 조정 및 최적화를 용이하게 합니다. 이 프레임워크는 주로 다음과 같은 섹션으로 구성되며, 각 섹션은 고유한 기능을 통해 전략의 유연성과 실용성을 보장합니다.
init 함수
__init__이 함수는 전략 클래스의 초기화 메서드로, 전략의 기본 구성 설정, 변수 초기화, 시장 정보 수집을 담당합니다. 이 함수는 전략 실행 전에 필요한 매개변수가 구성되도록 하여 이후 거래가 원활하게 실행될 수 있도록 보장합니다.initDatas 함수
saveStrategyRunTime 함수
setStrategyRunTime 함수
_G이 함수는 전달된 타임스탬프를 로컬에 저장합니다.getDaysFromTimeStamp 함수
saveUserDatasLocal 함수
_G이 기능은 데이터를 로컬에 저장합니다.readUserDataLocal 함수
clearUserDataLocal 함수
_G이 함수는 로컬 데이터를 지웁니다.runCmd 함수
orderDirectly 함수
openLong 함수
orderDirectly해당 함수는 매수 작업을 수행합니다.openShort 함수
orderDirectly해당 함수는 판매 작업을 수행합니다.coverLong 함수
orderDirectly해당 함수는 판매 작업을 수행합니다.coverShort 함수
orderDirectly해당 함수는 매수 작업을 수행합니다.getRealOrderSize 함수
getSinglePositionMargin 함수
getSinglePositionProfit 함수
calculateForcedPrice 함수
getMaxOrderSize 함수
getAccountAsset 함수
calculateProfit 함수
isEnoughAssetToOrder 함수
runInKLinePeriod 함수
True그렇지 않으면 반환False。trendJudgment 기능(핵심 트렌드 판단 모듈)
stopLoss 함수
takeProfit 함수
추적 TakeProfit 함수
주문 함수
trendStrategy 함수
printLogStatus 함수
LogStatus이 함수는 테이블 데이터를 상태 표시줄에 출력합니다.주요 기능
이 프레임워크는 디지털 화폐 시장에만 적용할 수 있는 것이 아니라,trendJudgment이 프레임워크는 다양한 거래 전략 요건에 맞춰 기능을 확장할 수 있습니다. 또한, 현물 시장이나 다양한 계약에 맞춰 프레임워크를 수정할 수 있어 높은 유연성과 확장성을 제공합니다.
포괄적이고 매우 유연한 자동 거래 시스템인 이 프레임워크는 암호화폐 시장의 추세 거래에 적합합니다. 지속적인 최적화와 확장을 통해 향후 암호화폐 트레이더들에게 귀중한 도구가 되어 자신만의 정량적 전략을 더욱 발전시키는 데 도움을 줄 것으로 기대됩니다. “암호화폐 추세 전략 거래 프레임워크”는 포괄적인 구조를 자랑합니다. 코드 분량은 비교적 많지만, 실제 거래 관점에서 추세 거래에 필요한 핵심 기능 모듈을 기본적으로 포함하고 있습니다. 따라서 이 프레임워크는 거래 전략 학습과 실제 적용 모두에서 상당한 참고 가치와 실질적인 중요성을 지닙니다. 포괄적인 기능과 유연성을 통해 다양한 시장 환경에 적응하여 강력한 지원을 제공합니다.
Inventor 플랫폼은 개발자들의 지혜와 경험이 담긴 양적 거래 지식과 전략의 보고입니다. 누구나 이곳에서 가치 있는 거래 전략과 기법을 탐색해 보시기 바랍니다. 혁신적이고 공유적인 사용자 여러분께 감사드립니다. 여러분의 기여 덕분에 이 플랫폼은 양적 거래에 대한 학습과 교류의 중요한 장이 되었으며, 모두가 기술과 전문성을 향상시키는 데 도움을 주고 있습니다.
'''backtest
start: 2024-11-26 00:00:00
end: 2024-12-03 00:00:00
period: 1d
basePeriod: 1d
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
'''
import json, talib
import numpy as np
class TrendStrategy:
def __init__(self):
# 基本设置
self._Currency = TradeCurrency
self._Interval = Interval
self._UseQuarter = UseQuarter
self._UseContract = TradeCurrency + ('.swap' if self._UseQuarter else '.quarter')
self._OnlyTrendJudgment = OnlyTrendJudgment
self._EnableMessageSend = EnableMessageSend
# 趋势判断
self._RunInKLinePeriod = RunInKLinePeriod
self._KLinePeriod = KLinePeriod
self._EmaLength = EmaLength
self._EmaCoefficient = EmaCoefficient
self._UseStddev = UseStddev
self._UseRecordsMiddleValue = UseRecordsMiddleValue
self._StddevLength = StddevLength
self._StddevDeviations = StddevDeviations
# 下单设置
self._MarginLevel = MarginLevel
self._OrderSize = OrderSize
self._OrderByMargin = OrderByMargin
self._OrderMarginPercent = OrderMarginPercent
self._PricePrecision = None
self._AmountPrecision = None
self._OneSizeInCurrentCoin = None
self._QuarterOneSizeValue = None
# 止盈止损
self._UseStopLoss = UseStopLoss
self._StopLossPercent = StopLossPercent
self._UseTakeProfit = UseTakeProfit
self._TakeProfitPercent = TakeProfitPercent
self._UseTrackingTakeProfit = UseTrackingTakeProfit
self._UsePositionRetracement = UsePositionRetracement
self._TakeProfitTriggerPercent = TakeProfitTriggerPercent
self._CallBakcPercent = CallBakcPercent
# 策略变量
self._LastBarTime = 0
self._TrendWhenTakeProfitOrStopLoss = 0
self._HadStopLoss = False
self._TriggeredTakeProfit = False
self._PeakPriceInPosition = 0
self._HadTakeProfit = False
self._PriceCrossEMAStatus = 0
# 统计变量
self._InitAsset = 0
self._ProfitLocal = 0
self._TakeProfitCount = 0
self._TradeCount = 0
self.StrategyRunTimeStampString = "strategy_run_time"
self._StrategyDatas = {"start_run_timestamp": 0, "others": ""}
self._UserDatas = None
# 相对固定参数
self._MaintenanceMarginRate = 0.004
self._TakerFee = 0.0005
self._IsUsdtStandard = False
# 获取合约信息
ticker = _C(exchange.GetTicker, self._UseContract)
marketInfo = exchange.GetMarkets()[self._UseContract]
Log('获取市场信息:', marketInfo)
self._PricePrecision = marketInfo['PricePrecision']
self._AmountPrecision = marketInfo['AmountPrecision']
self._OneSizeInCurrentCoin = marketInfo['CtVal']
self._QuarterOneSizeValue = marketInfo['CtVal']
exchange.SetCurrency(self._Currency)
exchange.SetMarginLevel(self._UseContract, self._MarginLevel)
exchange.SetPrecision(self._PricePrecision, self._AmountPrecision)
# 初始化数据
def initDatas(self):
self.saveStrategyRunTime()
self.readUserDataLocal()
self._InitAsset = self._UserDatas["init_assets"]
self._ProfitLocal = self._UserDatas["profit_local"]
self._TakeProfitCount = self._UserDatas["take_profit_count"]
self._TradeCount = self._UserDatas["trade_count"]
if self._OrderByMargin:
self.getRealOrderSize(-1, self._OrderSize)
Log("已经重新计算下单张数:", self._OrderSize)
if self._UseTakeProfit and self._UseTrackingTakeProfit:
raise Exception("止盈和回调止盈不能同时使用!")
# 设置合约
def setContract(self):
self._IsUsdtStandard = "USDT" in self._Currency
exchange.SetCurrency(self._Currency)
if self._UseQuarter:
exchange.SetContractType("quarter")
else:
exchange.SetContractType("swap")
# 保存程序起始运行时间 秒级时间戳
def saveStrategyRunTime(self):
local_data_strategy_run_time = _G(self.StrategyRunTimeStampString)
if local_data_strategy_run_time is None:
self._StrategyDatas["start_run_timestamp"] = Unix()
_G(self.StrategyRunTimeStampString, self._StrategyDatas["start_run_timestamp"])
else:
self._StrategyDatas["start_run_timestamp"] = local_data_strategy_run_time
# 设置程序起始运行时间 秒级时间戳
def setStrategyRunTime(self, timestamp):
_G(self.StrategyRunTimeStampString, timestamp)
self._StrategyDatas["start_run_timestamp"] = timestamp
# 计算两个时间戳之间的天数,参数是秒级时间戳
def getDaysFromTimeStamp(self, start_time, end_time):
if end_time < start_time:
return 0
return (end_time - start_time) // (60 * 60 * 24)
# 保存数据到本地
def saveUserDatasLocal(self):
self._UserDatas = {
"init_assets": self._InitAsset,
"profit_local": self._ProfitLocal,
"take_profit_count": self._TakeProfitCount,
"trade_count": self._TradeCount
}
# 存储到本地
_G(exchange.GetLabel(), self._UserDatas)
Log("已把所有数据保存到本地.")
# 读取用户本地数据,程序启动时候运行一次
def readUserDataLocal(self):
user_data = _G(exchange.GetLabel())
if user_data is None:
self._InitAsset = self.getAccountAsset(_C(exchange.GetPosition), _C(exchange.GetAccount), _C(exchange.GetTicker))
self._UserDatas = {
"init_assets": self._InitAsset,
"profit_local": 0,
"take_profit_count": 0,
"trade_count": 0
}
else:
self._UserDatas = user_data
# 清除用户本地数据,交互按钮点击运行
def clearUserDataLocal(self):
_G(exchange.GetLabel(), None)
Log(exchange.GetLabel(), ":已清除本地数据.")
# 策略交互
def runCmd(self):
cmd = GetCommand()
if cmd:
# 检测交互命令
Log("接收到的命令:", cmd, "#FF1CAE")
if cmd.startswith("ClearLocalData:"):
# 清除本地数据
self.clearUserDataLocal()
elif cmd.startswith("SaveLocalData:"):
# 保存数据到本地
self.saveUserDatasLocal()
elif cmd.startswith("ClearLog:"):
# 清除日志
log_reserve = cmd.replace("ClearLog:", "")
LogReset(int(log_reserve))
elif cmd.startswith("OrderSize:"):
# 修改下单张数
if self._OrderByMargin:
Log("已经使用保证金数量来下单,无法直接修改下单数量!")
else:
order_size = int(cmd.replace("OrderSize:", ""))
self._OrderSize = order_size
Log("下单张数已经修改为:", self._OrderSize)
elif cmd.startswith("OrderMarginPercent:"):
# 修改下单保证金百分比
if self._OrderByMargin:
order_margin_percent = float(cmd.replace("OrderMarginPercent:", ""))
self._OrderMarginPercent = order_margin_percent
Log("下单保证金百分比:", self._OrderMarginPercent, "%")
else:
Log("没有打开根据保证金数量下单,无法修改下单保证金百分比!")
# 交易函数
def orderDirectly(self, distance, price, amount):
tradeFunc = None
if amount <= 0:
raise Exception("设置的参数有误,下单数量已经小于0!")
if distance == "buy":
tradeFunc = exchange.Buy
elif distance == "sell":
tradeFunc = exchange.Sell
elif distance == "closebuy":
tradeFunc = exchange.Sell
else:
tradeFunc = exchange.Buy
exchange.SetDirection(distance)
return tradeFunc(price, amount)
def openLong(self, price, amount):
real_amount = self.getRealOrderSize(price, amount)
return self.orderDirectly("buy", price, real_amount)
def openShort(self, price, amount):
real_amount = self.getRealOrderSize(price, amount)
return self.orderDirectly("sell", price, real_amount)
def coverLong(self, price, amount):
return self.orderDirectly("closebuy", price, amount)
def coverShort(self, price, amount):
return self.orderDirectly("closesell", price, amount)
# 重新计算下单数量
def getRealOrderSize(self, price, amount):
real_price = price if price != -1 else _C(exchange.GetTicker).Last
if self._OrderByMargin:
if self._IsUsdtStandard:
self._OrderSize = _N(self._InitAsset * (self._OrderMarginPercent / 100) / real_price * self._MarginLevel / self._OneSizeInCurrentCoin, self._AmountPrecision) # u本位数量(杠杆放大数量)
else:
self._OrderSize = _N(self._InitAsset * (self._OrderMarginPercent / 100) * self._MarginLevel * real_price / self._QuarterOneSizeValue, self._AmountPrecision) # 币本位数量(杠杆放大数量)
else:
self._OrderSize = amount
return self._OrderSize
# 获取单个持仓占用保证金
def getSinglePositionMargin(self, position, ticker):
position_margin = 0
if len(position) > 0:
if self._IsUsdtStandard:
position_margin = position[0].Amount * self._OneSizeInCurrentCoin * ticker.Last / self._MarginLevel
else:
position_margin = position[0].Amount * self._QuarterOneSizeValue / ticker.Last / self._MarginLevel
return position_margin
# 获取单向持仓的收益和收益%
def getSinglePositionProfit(self, position, ticker):
if len(position) == 0:
return [0, 0]
price = ticker.Last
position_margin = self.getSinglePositionMargin(position, ticker)
position_profit_percent = (price - position[0].Price) / position[0].Price * self._MarginLevel if position[0].Type == PD_LONG else (position[0].Price - price) / position[0].Price * self._MarginLevel
position_profit = position_margin * position_profit_percent
return [position_profit, position_profit_percent]
# 计算强平价格
def calculateForcedPrice(self, account, position, ticker):
position_profit = 0
total_avail_balance = 0
forced_price = 0
position_margin = self.getSinglePositionMargin(position, ticker)
[position_profit, position_profit_percent] = self.getSinglePositionProfit(position, ticker)
if self._IsUsdtStandard:
total_avail_balance = account.Balance + position_margin + account.FrozenBalance - position_profit if position_profit > 0 else account.Balance + position_margin + account.FrozenBalance
if position[0].Type == PD_LONG:
forced_price = ((self._MaintenanceMarginRate + self._TakerFee) * self._MarginLevel * account.FrozenBalance - total_avail_balance) / self._OneSizeInCurrentCoin + (position[0].Amount * position[0].Price) / (position[0].Amount - (self._MaintenanceMarginRate + self._TakerFee) * position[0].Amount)
else:
forced_price = ((self._MaintenanceMarginRate + self._TakerFee) * self._MarginLevel * account.FrozenBalance - total_avail_balance) / self._OneSizeInCurrentCoin - (position[0].Amount * position[0].Price) / (-1 * position[0].Amount - (self._MaintenanceMarginRate + self._TakerFee) * position[0].Amount)
else:
total_avail_balance = account.Stocks + position_margin + account.FrozenStocks - position_profit if position_profit > 0 else account.Stocks + position_margin + account.FrozenStocks
if position[0].Type == PD_LONG:
forced_price = (self._MaintenanceMarginRate * position[0].Amount + position[0].Amount) / (total_avail_balance / self._QuarterOneSizeValue + position[0].Amount / position[0].Price)
else:
forced_price = (self._MaintenanceMarginRate * position[0].Amount - position[0].Amount) / (total_avail_balance / self._QuarterOneSizeValue - position[0].Amount / position[0].Price)
if forced_price < 0:
forced_price = 0
return forced_price
# 计算最大可下单张数
def getMaxOrderSize(self, margin_level, ticker, account):
max_order_size = 0
if self._IsUsdtStandard:
max_order_size = account.Balance * margin_level / (self._OneSizeInCurrentCoin * ticker.Last)
else:
max_order_size = account.Stocks * ticker.Last / self._QuarterOneSizeValue * margin_level
return _N(max_order_size, self._AmountPrecision)
# 获取账户资产
def getAccountAsset(self, position, account, ticker):
# 计算不同情况下的账户初始资产
account_asset = 0
position_margin = self.getSinglePositionMargin(position, ticker)
if self._IsUsdtStandard:
if len(position) > 0:
account_asset = account.Balance + account.FrozenBalance + position_margin
else:
account_asset = account.Balance + account.FrozenBalance
else:
if len(position) > 0:
account_asset = account.Stocks + account.FrozenStocks + position_margin
else:
account_asset = account.Stocks + account.FrozenStocks
return account_asset
# 收益统计
def calculateProfit(self, ticker):
# 重新获取一下账户持仓与资产
position = _C(exchange.GetPosition)
account = _C(exchange.GetAccount)
# 当前总收益 - 上一次总收益 = 本次的收益
current_profit = (self.getAccountAsset(position, account, ticker) - self._InitAsset) - self._ProfitLocal
self._ProfitLocal += current_profit
if current_profit > 0:
self._TakeProfitCount += 1
self._TradeCount += 1
LogProfit(_N(self._ProfitLocal, 4), " 本次收益:", _N(current_profit, 6))
self.saveUserDatasLocal()
# 是否还够资金下单
def isEnoughAssetToOrder(self, order_size, ticker):
is_enough = True
account = _C(exchange.GetAccount)
if self._IsUsdtStandard:
if account.Balance < order_size * ticker.Last * self._OneSizeInCurrentCoin / self._MarginLevel:
is_enough = False
else:
if account.Stocks < order_size * self._QuarterOneSizeValue / ticker.Last / self._MarginLevel:
is_enough = False
return is_enough
# 按照K线周期运行策略核心
def runInKLinePeriod(self, records):
bar_time = records[-1].Time
if self._RunInKLinePeriod and self._LastBarTime == bar_time:
return False
self._LastBarTime = bar_time
return True
# 趋势判断模块(可编辑具体指标)
def trendJudgment(self, records):
# 检查价格是否穿过均线
def checkPriceCrossEma(price, ema_value):
if self._PriceCrossEMAStatus == 0:
if price <= ema_value:
self._PriceCrossEMAStatus = -1
else:
self._PriceCrossEMAStatus = 1
elif (self._PriceCrossEMAStatus == -1 and price >= ema_value) or (self._PriceCrossEMAStatus == 1 and price <= ema_value):
self._PriceCrossEMAStatus = 2 # 完成穿过
# EMA的多空判断
ema_long = False
ema_short = False
price = records[-2].Close # 已经收盘的K线的收盘价格
ema = TA.EMA(records, self._EmaLength)
ema_value = ema[-2] # 收盘K线对应ema值
ema_upper = ema_value * (1 + self._EmaCoefficient)
ema_lower = ema_value * (1 - self._EmaCoefficient)
checkPriceCrossEma(price, ema_value)
if price > ema_upper:
ema_long = True
elif price < ema_lower:
ema_short = True
# 标准差判断
in_trend = False
if self._UseStddev:
records_data = []
for i in range(len(records)):
records_data.append((records[i].High + records[i].Low) / 2 if self._UseRecordsMiddleValue else records[i].Close)
records_data = np.array(records_data) # 将 list 转换为 np.array
stddev = np.std(records_data, ddof=1) # 使用 numpy 计算标准差
if stddev > self._StddevDeviations:
in_trend = True
else:
in_trend = True
# 趋势判断
long = in_trend and ema_long
short = in_trend and ema_short
if long:
Log("当前趋势为:多", self._EnableMessageSend and "@" or "#00FF7F")
elif short:
Log("当前趋势为:空", self._EnableMessageSend and "@" or "#FF0000")
else:
Log("当前趋势为:震荡", self._EnableMessageSend and "@" or "#007FFF")
return [long, short]
# 止损
def stopLoss(self, position, ticker):
stop_loss_price = 0
price = ticker.Last
if len(position) == 1 and self._UseStopLoss:
if position[0].Type == PD_LONG:
stop_loss_price = position[0].Price * (1 - self._StopLossPercent / 100)
if price < stop_loss_price:
self.coverLong(-1, position[0].Amount)
self.calculateProfit(ticker)
self._TrendWhenTakeProfitOrStopLoss = 1
self._HadStopLoss = True
Log("多单止损。止损价格:", _N(stop_loss_price, 6), ", 持仓价格:", _N(position[0].Price), self._EnableMessageSend and "@" or "#FF1CAE")
elif position[0].Type == PD_SHORT:
stop_loss_price = position[0].Price * (1 + self._StopLossPercent / 100)
if price > stop_loss_price:
self.coverShort(-1, position[0].Amount)
self.calculateProfit(ticker)
self._TrendWhenTakeProfitOrStopLoss = -1
self._HadStopLoss = True
Log("空单止损。止损价格:", _N(stop_loss_price, 6), ", 持仓价格:", _N(position[0].Price), self._EnableMessageSend and "@" or "#FF1CAE")
# 止盈
def takeProfit(self, position, ticker):
take_profit_price = 0
price = ticker.Last
if len(position) == 1 and self._UseTakeProfit:
if position[0].Type == PD_LONG:
take_profit_price = position[0].Price * (1 + self._TakeProfitPercent / 100)
if price > take_profit_price:
self.coverLong(-1, position[0].Amount)
self.calculateProfit(ticker)
self._TrendWhenTakeProfitOrStopLoss = 1
self._HadTakeProfit = True
Log("多单止盈。止盈价格:", _N(take_profit_price, 6), ", 持仓价格:", _N(position[0].Price), self._EnableMessageSend and "@" or "#FF1CAE")
elif position[0].Type == PD_SHORT:
take_profit_price = position[0].Price * (1 - self._TakeProfitPercent / 100)
if price < take_profit_price:
self.coverShort(-1, position[0].Amount)
self.calculateProfit(ticker)
self._TrendWhenTakeProfitOrStopLoss = -1
self._HadTakeProfit = True
Log("空单止盈。止盈价格:", _N(take_profit_price, 6), ", 持仓价格:", _N(position[0].Price), self._EnableMessageSend and "@" or "#FF1CAE")
# 回调止盈
def trackingTakeProfit(self, position, ticker):
take_profit_price = 0
trigger_price = 0
price = ticker.Last
if len(position) > 0 and self._UseTrackingTakeProfit:
if position[0].Type == PD_LONG:
# 多单持仓
if self._TriggeredTakeProfit:
# 已达到触发价格,监控是否止盈
self._PeakPriceInPosition = price if price > self._PeakPriceInPosition else self._PeakPriceInPosition # 更新价格高点
if self._UsePositionRetracement:
take_profit_price = self._PeakPriceInPosition - (self._PeakPriceInPosition - position[0].Price) * (self._CallBakcPercent / 100) # 计算回调的止盈价格
else:
take_profit_price = self._PeakPriceInPosition * (1 - self._CallBakcPercent / 100) # 计算回调的止盈价格
if price < take_profit_price:
self.coverLong(-1, position[0].Amount) # 平多
self.calculateProfit(ticker)
self._TriggeredTakeProfit = False # 复位触发标记
self._TrendWhenTakeProfitOrStopLoss = 1 # 记录止盈时候的趋势
self._HadTakeProfit = True # 记录发生了止盈
Log("多单回调止盈:持仓中价格高点:", _N(self._PeakPriceInPosition, 6), ", 止盈价格:", _N(take_profit_price, 6), ", 当前价格:", _N(price, 6),
", 持仓价格:", _N(position[0].Price, 6), self._EnableMessageSend and "@" or "#FF1CAE")
else:
# 监控是否达到回调止盈的触发价格
trigger_price = position[0].Price * (1 + self._TakeProfitTriggerPercent / 100)
if price > trigger_price:
self._TriggeredTakeProfit = True # 触发回调止盈
self._PeakPriceInPosition = price # 记录价格高点
Log("多单已达到回调止盈的触发价格:", _N(trigger_price, 6), ", 当前价格:", _N(price, 6), ", 持仓价格:", _N(position[0].Price, 6))
elif position[0].Type == PD_SHORT:
# 空单持仓
if self._TriggeredTakeProfit:
# 已达到触发价格,监控是否止盈
self._PeakPriceInPosition = price if price < self._PeakPriceInPosition else self._PeakPriceInPosition # 更新价格低点
if self._UsePositionRetracement:
take_profit_price = self._PeakPriceInPosition + (position[0].Price - self._PeakPriceInPosition) * (self._CallBakcPercent / 100) # 计算回调的止盈价格
else:
take_profit_price = self._PeakPriceInPosition * (1 + self._CallBakcPercent / 100) # 计算回调的止盈价格
if price > take_profit_price:
self.coverShort(-1, position[0].Amount) # 平空
self.calculateProfit(ticker)
self._TriggeredTakeProfit = False # 复位触发标记
self._TrendWhenTakeProfitOrStopLoss = -1 # 记录止盈时候的趋势
self._HadTakeProfit = True # 记录发生了止盈
Log("空单回调止盈:持仓中价格低点:", _N(self._PeakPriceInPosition, 6), ", 止盈价格:", _N(take_profit_price, 6), ", 当前价格:", _N(price, 6),
", 持仓价格:", _N(position[0].Price, 6), self._EnableMessageSend and "@" or "#FF1CAE")
else:
# 监控是否达到回调止盈的触发价格
trigger_price = position[0].Price * (1 - self._TakeProfitTriggerPercent / 100)
if price < trigger_price:
self._TriggeredTakeProfit = True # 触发回调止盈
self._PeakPriceInPosition = price # 记录价格低点
Log("空单已达到回调止盈的触发价格:", _N(trigger_price, 6), ", 当前价格:", _N(price, 6), ", 持仓价格:", _N(position[0].Price, 6))
# 下单
def order(self, long, short, position, ticker):
position_size = position[0].Amount if len(position) > 0 else 0
position_type = position[0].Type if len(position) > 0 else None
if long:
# 趋势多
if (self._HadStopLoss or self._HadTakeProfit) and self._TrendWhenTakeProfitOrStopLoss == 1:
# 发生了止盈止损,并且止盈止损时候趋势为多,不再做多
return
if position_size > 0 and position_type == PD_SHORT:
self.coverShort(-1, position_size)
self.calculateProfit(ticker)
elif position_size > 0 and position_type == PD_LONG:
# 多单持仓,不重复下单
return
else:
# 没有持仓,如果是首次运行或者策略重启,需要等待价格穿过一次EMA均线才下单
if self._PriceCrossEMAStatus != 2:
return
if self.isEnoughAssetToOrder(self._OrderSize, ticker):
self.openLong(-1, self._OrderSize)
self._HadStopLoss = False
self._HadTakeProfit = False
else:
raise Exception("下单金额数量不足!")
elif short:
# 趋势空
if (self._HadStopLoss or self._HadTakeProfit) and self._TrendWhenTakeProfitOrStopLoss == -1:
# 发生了止盈止损,并且止盈止损时候趋势为空,不再做空
return
if position_size > 0 and position_type == PD_LONG:
self.coverLong(-1, position_size)
self.calculateProfit(ticker)
elif position_size > 0 and position_type == PD_SHORT:
# 空单持仓,不重复下单
return
else:
# 没有持仓,如果是首次运行或者策略重启,需要等待价格穿过一次EMA均线才下单
if self._PriceCrossEMAStatus != 2:
return
if self.isEnoughAssetToOrder(self._OrderSize, ticker):
self.openShort(-1, self._OrderSize)
self._HadStopLoss = False
self._HadTakeProfit = False
else:
raise Exception("下单金额数量不足!")
# 趋势策略
def trendStrategy(self):
ticker = _C(exchange.GetTicker)
position = _C(exchange.GetPosition)
account = _C(exchange.GetAccount)
records = _C(exchange.GetRecords, self._KLinePeriod * 60)
if len(position) > 1:
Log(position)
raise Exception("同时有多空持仓!")
# 策略交互
self.runCmd()
# 状态栏信息打印
self.printLogStatus(ticker, account, position)
# 止损
self.stopLoss(position, ticker)
# 止盈
self.takeProfit(position, ticker)
# 回调止盈
self.trackingTakeProfit(position, ticker)
# 按照K线周期运行策略
if not self.runInKLinePeriod(records):
return
# 趋势判断和下单
long = False
short = False
[long, short] = self.trendJudgment(records)
if not self._OnlyTrendJudgment:
self.order(long, short, position, ticker)
# 状态栏信息打印
def printLogStatus(self, ticker, account, position):
table_overview = {
"type": "table",
"title": "策略总览",
"cols": ["开始时间", "已运行天数", "交易次数", "胜率", "预估月化%", "预估年化%"],
"rows": []
}
table_account = {
"type": "table",
"title": "账户资金",
"cols": ["当前资产", "初始资产", "可用余额", "冻结余额", "可下单张数", "收益", "收益%"],
"rows": []
}
table_position = {
"type": "table",
"title": "持仓情况",
"cols": ["交易币种", "杠杆倍数", "持仓均价", "方向", "数量", "保证金", "预估强平价格", "浮动盈亏", "浮动盈亏%"],
"rows": []
}
i = 0
# 策略总览
the_running_days = self.getDaysFromTimeStamp(self._StrategyDatas["start_run_timestamp"], Unix())
monthly_rate_of_profit = 0
if the_running_days > 1:
monthly_rate_of_profit = self._ProfitLocal / self._InitAsset / the_running_days * 30
table_overview["rows"].append([_D(self._StrategyDatas["start_run_timestamp"]), the_running_days, self._TradeCount,
0 if self._TradeCount == 0 else (str(_N(self._TakeProfitCount / self._TradeCount * 100, 2)) + "%"),
str(_N(monthly_rate_of_profit * 100, 2)) + "%", str(_N(monthly_rate_of_profit * 12 * 100, 2)) + "%"])
# 账户资金
current_asset = self.getAccountAsset(position, account, ticker)
max_order_size = self.getMaxOrderSize(self._MarginLevel, ticker, account)
asset_profit = current_asset - self._InitAsset
asset_profit_percent = asset_profit / self._InitAsset
table_account["rows"].append([_N(current_asset, 4), _N(self._InitAsset, 4), _N(account.Balance if self._IsUsdtStandard else account.Stocks, 4),
_N(account.FrozenBalance if self._IsUsdtStandard else account.FrozenStocks, 4), max_order_size, _N(asset_profit, 4),
str(_N(asset_profit_percent * 100, 2)) + "%"])
# 持仓情况
position_direction = ""
forced_cover_up_price = 0
position_profit_percent = 0
position_profit = 0
position_margin = 0
if len(position) == 0:
table_position["rows"].append(["无持仓", "-", "-", "-", "-", "-", "-", "-", "-"])
else:
position_direction = "多单" if position[0].Type == PD_LONG else "空单"
[position_profit, position_profit_percent] = self.getSinglePositionProfit(position, ticker)
position_margin = self.getSinglePositionMargin(position, ticker)
forced_cover_up_price = self.calculateForcedPrice(account, position, ticker)
table_position["rows"].append([exchange.GetCurrency(), self._MarginLevel, _N(position[0].Price, 4), position_direction, position[0].Amount,
_N(position_margin, 4), _N(forced_cover_up_price, 4), _N(position_profit, 4), str(_N((position_profit_percent * 100), 2)) + "%"])
# 打印表格
LogStatus('`' + json.dumps(table_overview) + '`\n'
+ '`' + json.dumps(table_account) + '`\n'
+ '`' + json.dumps(table_position) + '`\n')
# main
def main():
exchange.IO('simulate', True)
strategy = TrendStrategy()
strategy.setContract()
strategy.initDatas()
while True:
strategy.trendStrategy()
Sleep(strategy._Interval)