Я часто захожу на платформу Inventor и всегда нахожу сокровища. Сегодня я нашёл 21-летнего парня.Стратегия трендаЯ восхищаюсь изысканной и совершенной структурой кода автора оригинала, которая отличается высокой гибкостью. Оригинальная стратегия — это JS-версия, переписанная для удобства пользователей Python.
Честно говоря, многие новички, впервые приступая к количественной торговле, совершают множество ошибок. Они часто сталкиваются с такими проблемами, как невыполненные ордера, убытки из-за плохого управления рисками и потеря данных после перезапуска стратегии. Позже я постепенно осознал важность хорошей платформы, которая может помочь нам избежать многих ловушек. Эта платформа трендовой стратегии — невероятно ценный инструмент. Это больше, чем просто торговая стратегия; это, скорее, набор инструментов, предоставляющий вам базовые, но важные функции, такие как размещение ордеров, стоп-лосс ордера и управление данными. Вам нужно сосредоточиться только на ключевых вопросах: «когда покупать» и «когда продавать». Более того, платформа очень свободна в использовании, позволяя легко заменить EMA на MACD, RSI или любой другой индикатор по вашему выбору. Хотите следовать за трендами? Без проблем. Хотите попробовать возврат к среднему? Или хотите объединить несколько индикаторов? Конечно. Такая гибкость невероятно полезна: вы можете модифицировать один и тот же код, экспериментируя с разными идеями.
Сегодня я делюсь этой концепцией, надеясь, что она будет полезна тем, кто изучает количественное инвестирование. Ниже представлено подробное описание каждого компонента этой концепции, которое, я уверен, будет вам полезно.
В отличие от множества независимых функций, используемых в фреймворках для многотоварной торговли, этот фреймворк пытается организовать и управлять различными частями стратегии, используя формат классов. Этот объектно-ориентированный дизайн не только улучшает удобство поддержки и масштабируемость кода, но и делает компоненты стратегии более модульными, упрощая последующие корректировки и оптимизации. Фреймворк в основном состоит из следующих разделов, каждый из которых выполняет свою функцию, обеспечивая гибкость и практичность стратегии.
функция init
__init__Эта функция представляет собой метод инициализации класса стратегии, отвечающий за настройку базовой конфигурации стратегии, инициализацию переменных и получение рыночной информации. Эта функция обеспечивает настройку необходимых параметров перед запуском стратегии, обеспечивая бесперебойное выполнение последующих торговых операций.функция initDatas
Функция saveStrategyRunTime
функция setStrategyRunTime
_GФункция сохраняет переданную метку времени локально.Функция getDaysFromTimeStamp
Функция saveUserDatasLocal
_GФункция сохраняет данные локально.функция readUserDataLocal
функция clearUserDataLocal
_GФункция очищает локальные данные.Функция runCmd
функция orderDirectly
функция openLong
orderDirectlyФункция выполняет операцию покупки.функция openShort
orderDirectlyФункция выполняет операцию продажи.Функция coverLong
orderDirectlyФункция выполняет операцию продажи.функция coverShort
orderDirectlyФункция выполняет операцию покупки.функция getRealOrderSize
Функция getSinglePositionMargin
Функция getSinglePositionProfit
Функция calculateForcedPrice
функция getMaxOrderSize
Функция getAccountAsset
Функция calculateProfit
функция isEnoughAssetToOrder
функция runInKLinePeriod
TrueВ противном случае вернитеFalse。Функция trendJudgment (модуль оценки основного тренда)
функция стоп-лосса
функция takeProfit
Функция отслеживанияTakeProfit
функция заказа
Функция trendStrategy
функция printLogStatus
LogStatusФункция выводит данные таблицы в строку состояния.основная функция
Эта структура применима не только к рынку цифровых валют, но также может быть использована вtrendJudgmentФреймворк может быть расширен в функциональном плане для адаптации к различным торговым стратегиям. Кроме того, фреймворк может быть модифицирован специально для спотового рынка или многовариантных контрактов, обеспечивая высокую гибкость и масштабируемость.
Будучи комплексной и очень гибкой автоматизированной торговой системой, эта система подходит для трендовой торговли на рынке криптовалют. Благодаря постоянной оптимизации и расширению, ожидается, что в будущем она станет ценным инструментом для криптовалютных трейдеров, помогая им эффективнее разрабатывать собственные количественные стратегии. «Криптовалютная трендовая торговая стратегия» имеет комплексную структуру. Несмотря на относительно большой объём кода, она, по сути, охватывает основные функциональные модули, необходимые для трендовой торговли с точки зрения реальной торговли. Таким образом, эта система имеет значительную справочную ценность и практическое значение как для изучения торговых стратегий, так и для их практического применения. Её обширная функциональность и гибкость позволяют ей адаптироваться к различным рыночным условиям, обеспечивая надежную поддержку.
Платформа Inventor — это настоящая сокровищница знаний и стратегий количественной торговли, каждая из которых воплощает мудрость и опыт её разработчиков. Мы приглашаем всех желающих изучить здесь ценные торговые стратегии и методики. Благодарим всех наших новаторов и пользователей, готовых делиться опытом. Именно благодаря вашему вкладу эта платформа стала важнейшей площадкой для обучения и обмена опытом в области количественной торговли, помогая каждому совершенствовать свои навыки и знания.
”`python “‘backtest start: 2024-11-26 00:00:00 end: 2024-12-03 00:00:00 period: 1d basePeriod: 1d exchanges: [{“eid”:“Futures_Binance”,“currency”:“BTC_USDT”}] “’
import json, talib import numpy as np
class TrendStrategy: def init(self): # 基本设置 self._Currency = TradeCurrency self._Interval = Interval self._UseQuarter = UseQuarter self._UseContract = TradeCurrency + (‘.swap’ if self._UseQuarter else ‘.quarter’) self._OnlyTrendJudgment = OnlyTrendJudgment self._EnableMessageSend = EnableMessageSend # 趋势判断 self._RunInKLinePeriod = RunInKLinePeriod self._KLinePeriod = KLinePeriod self._EmaLength = EmaLength self._EmaCoefficient = EmaCoefficient self._UseStddev = UseStddev self._UseRecordsMiddleValue = UseRecordsMiddleValue self._StddevLength = StddevLength self._StddevDeviations = StddevDeviations # 下单设置 self._MarginLevel = MarginLevel self._OrderSize = OrderSize self._OrderByMargin = OrderByMargin self._OrderMarginPercent = OrderMarginPercent self._PricePrecision = None self._AmountPrecision = None self._OneSizeInCurrentCoin = None self._QuarterOneSizeValue = None # 止盈止损 self._UseStopLoss = UseStopLoss self._StopLossPercent = StopLossPercent self._UseTakeProfit = UseTakeProfit self._TakeProfitPercent = TakeProfitPercent self._UseTrackingTakeProfit = UseTrackingTakeProfit self._UsePositionRetracement = UsePositionRetracement self._TakeProfitTriggerPercent = TakeProfitTriggerPercent self._CallBakcPercent = CallBakcPercent
# 策略变量
self._LastBarTime = 0
self._TrendWhenTakeProfitOrStopLoss = 0
self._HadStopLoss = False
self._TriggeredTakeProfit = False
self._PeakPriceInPosition = 0
self._HadTakeProfit = False
self._PriceCrossEMAStatus = 0
# 统计变量
self._InitAsset = 0
self._ProfitLocal = 0
self._TakeProfitCount = 0
self._TradeCount = 0
self.StrategyRunTimeStampString = "strategy_run_time"
self._StrategyDatas = {"start_run_timestamp": 0, "others": ""}
self._UserDatas = None
# 相对固定参数
self._MaintenanceMarginRate = 0.004
self._TakerFee = 0.0005
self._IsUsdtStandard = False
# 获取合约信息
ticker = _C(exchange.GetTicker, self._UseContract)
marketInfo = exchange.GetMarkets()[self._UseContract]
Log('获取市场信息:', marketInfo)
self._PricePrecision = marketInfo['PricePrecision']
self._AmountPrecision = marketInfo['AmountPrecision']
self._OneSizeInCurrentCoin = marketInfo['CtVal']
self._QuarterOneSizeValue = marketInfo['CtVal']
exchange.SetCurrency(self._Currency)
exchange.SetMarginLevel(self._UseContract, self._MarginLevel)
exchange.SetPrecision(self._PricePrecision, self._AmountPrecision)
# 初始化数据
def initDatas(self):
self.saveStrategyRunTime()
self.readUserDataLocal()
self._InitAsset = self._UserDatas["init_assets"]
self._ProfitLocal = self._UserDatas["profit_local"]
self._TakeProfitCount = self._UserDatas["take_profit_count"]
self._TradeCount = self._UserDatas["trade_count"]
if self._OrderByMargin:
self.getRealOrderSize(-1, self._OrderSize)
Log("已经重新计算下单张数:", self._OrderSize)
if self._UseTakeProfit and self._UseTrackingTakeProfit:
raise Exception("止盈和回调止盈不能同时使用!")
# 设置合约
def setContract(self):
self._IsUsdtStandard = "USDT" in self._Currency
exchange.SetCurrency(self._Currency)
if self._UseQuarter:
exchange.SetContractType("quarter")
else:
exchange.SetContractType("swap")
# 保存程序起始运行时间 秒级时间戳
def saveStrategyRunTime(self):
local_data_strategy_run_time = _G(self.StrategyRunTimeStampString)
if local_data_strategy_run_time is None:
self._StrategyDatas["start_run_timestamp"] = Unix()
_G(self.StrategyRunTimeStampString, self._StrategyDatas["start_run_timestamp"])
else:
self._StrategyDatas["start_run_timestamp"] = local_data_strategy_run_time
# 设置程序起始运行时间 秒级时间戳
def setStrategyRunTime(self, timestamp):
_G(self.StrategyRunTimeStampString, timestamp)
self._StrategyDatas["start_run_timestamp"] = timestamp
# 计算两个时间戳之间的天数,参数是秒级时间戳
def getDaysFromTimeStamp(self, start_time, end_time):
if end_time < start_time:
return 0
return (end_time - start_time) // (60 * 60 * 24)
# 保存数据到本地
def saveUserDatasLocal(self):
self._UserDatas = {
"init_assets": self._InitAsset,
"profit_local": self._ProfitLocal,
"take_profit_count": self._TakeProfitCount,
"trade_count": self._TradeCount
}
# 存储到本地
_G(exchange.GetLabel(), self._UserDatas)
Log("已把所有数据保存到本地.")
# 读取用户本地数据,程序启动时候运行一次
def readUserDataLocal(self):
user_data = _G(exchange.GetLabel())
if user_data is None:
self._InitAsset = self.getAccountAsset(_C(exchange.GetPosition), _C(exchange.GetAccount), _C(exchange.GetTicker))
self._UserDatas = {
"init_assets": self._InitAsset,
"profit_local": 0,
"take_profit_count": 0,
"trade_count": 0
}
else:
self._UserDatas = user_data
# 清除用户本地数据,交互按钮点击运行
def clearUserDataLocal(self):
_G(exchange.GetLabel(), None)
Log(exchange.GetLabel(), ":已清除本地数据.")
# 策略交互
def runCmd(self):
cmd = GetCommand()
if cmd:
# 检测交互命令
Log("接收到的命令:", cmd, "#FF1CAE")
if cmd.startswith("ClearLocalData:"):
# 清除本地数据
self.clearUserDataLocal()
elif cmd.startswith("SaveLocalData:"):
# 保存数据到本地
self.saveUserDatasLocal()
elif cmd.startswith("ClearLog:"):
# 清除日志
log_reserve = cmd.replace("ClearLog:", "")
LogReset(int(log_reserve))
elif cmd.startswith("OrderSize:"):
# 修改下单张数
if self._OrderByMargin:
Log("已经使用保证金数量来下单,无法直接修改下单数量!")
else:
order_size = int(cmd.replace("OrderSize:", ""))
self._OrderSize = order_size
Log("下单张数已经修改为:", self._OrderSize)
elif cmd.startswith("OrderMarginPercent:"):
# 修改下单保证金百分比
if self._OrderByMargin:
order_margin_percent = float(cmd.replace("OrderMarginPercent:", ""))
self._OrderMarginPercent = order_margin_percent
Log("下单保证金百分比:", self._OrderMarginPercent, "%")
else:
Log("没有打开根据保证金数量下单,无法修改下单保证金百分比!")
# 交易函数
def orderDirectly(self, distance, price, amount):
tradeFunc = None
if amount <= 0:
raise Exception("设置的参数有误,下单数量已经小于0!")
if distance == "buy":
tradeFunc = exchange.Buy
elif distance == "sell":
tradeFunc = exchange.Sell
elif distance == "closebuy":
tradeFunc = exchange.Sell
else:
tradeFunc = exchange.Buy
exchange.SetDirection(distance)
return tradeFunc(price, amount)
def openLong(self, price, amount):
real_amount = self.getRealOrderSize(price, amount)
return self.orderDirectly("buy", price, real_amount)
def openShort(self, price, amount):
real_amount = self.getRealOrderSize(price, amount)
return self.orderDirectly("sell", price, real_amount)
def coverLong(self, price, amount):
return self.orderDirectly("closebuy", price, amount)
def coverShort(self, price, amount):
return self.orderDirectly("closesell", price, amount)
# 重新计算下单数量
def getRealOrderSize(self, price, amount):
real_price = price if price != -1 else _C(exchange.GetTicker).Last
if self._OrderByMargin:
if self._IsUsdtStandard:
self._OrderSize = _N(self._InitAsset * (self._OrderMarginPercent / 100) / real_price * self._MarginLevel / self._OneSizeInCurrentCoin, self._AmountPrecision) # u本位数量(杠杆放大数量)
else:
self._OrderSize = _N(self._InitAsset * (self._OrderMarginPercent / 100) * self._MarginLevel * real_price / self._QuarterOneSizeValue, self._AmountPrecision) # 币本位数量(杠杆放大数量)
else:
self._OrderSize = amount
return self._OrderSize
# 获取单个持仓占用保证金
def getSinglePositionMargin(self, position, ticker):
position_margin = 0
if len(position) > 0:
if self._IsUsdtStandard:
position_margin = position[0].Amount * self._OneSizeInCurrentCoin * ticker.Last / self._MarginLevel
else:
position_margin = position[0].Amount * self._QuarterOneSizeValue / ticker.Last / self._MarginLevel
return position_margin
# 获取单向持仓的收益和收益%
def getSinglePositionProfit(self, position, ticker):
if len(position) == 0:
return [0, 0]
price = ticker.Last
position_margin = self.getSinglePositionMargin(position, ticker)
position_profit_percent = (price - position[0].Price) / position[0].Price * self._MarginLevel if position[0].Type == PD_LONG else (position[0].Price - price) / position[0].Price * self._MarginLevel
position_profit = position_margin * position_profit_percent
return [position_profit, position_profit_percent]
# 计算强平价格
def calculateForcedPrice(self, account, position, ticker):
position_profit = 0
total_avail_balance = 0
forced_price = 0
position_margin = self.getSinglePositionMargin(position, ticker)
[position_profit, position_profit_percent] = self.getSinglePositionProfit(position, ticker)
if self._IsUsdtStandard:
total_avail_balance = account.Balance + position_margin + account.FrozenBalance - position_profit if position_profit > 0 else account.Balance + position_margin + account.FrozenBalance
if position[0].Type == PD_LONG:
forced_price = ((self._MaintenanceMarginRate + self._TakerFee) * self._MarginLevel * account.FrozenBalance - total_avail_balance) / self._OneSizeInCurrentCoin + (position[0].Amount * position[0].Price) / (position[0].Amount - (self._MaintenanceMarginRate + self._TakerFee) * position[0].Amount)
else:
forced_price = ((self._MaintenanceMarginRate + self._TakerFee) * self._MarginLevel * account.FrozenBalance - total_avail_balance) / self._OneSizeInCurrentCoin - (position[0].Amount * position[0].Price) / (-1 * position[0].Amount - (self._MaintenanceMarginRate + self._TakerFee) * position[0].Amount)
else:
total_avail_balance = account.Stocks + position_margin + account.FrozenStocks - position_profit if position_profit > 0 else account.Stocks + position_margin + account.FrozenStocks
if position[0].Type == PD_LONG:
forced_price = (self._MaintenanceMarginRate * position[0].Amount + position[0].Amount) / (total_avail_balance / self._QuarterOneSizeValue + position[0].Amount / position[0].Price)
else:
forced_price = (self._MaintenanceMarginRate * position[0].Amount - position[0].Amount) / (total_avail_balance / self._QuarterOneSizeValue - position[0].Amount / position[0].Price)
if forced_price < 0:
forced_price = 0
return forced_price
# 计算最大可下单张数
def getMaxOrderSize(self, margin_level, ticker, account):
max_order_size = 0
if self._IsUsdtStandard:
max_order_size = account.Balance * margin_level / (self._OneSizeInCurrentCoin * ticker.Last)
else:
max_order_size = account.Stocks * ticker.Last / self._QuarterOneSizeValue * margin_level
return _N(max_order_size, self._AmountPrecision)
# 获取账户资产
def getAccountAsset(self, position, account, ticker):
# 计算不同情况下的账户初始资产
account_asset = 0
position_margin = self.getSinglePositionMargin(position, ticker)
if self._IsUsdtStandard:
if len(position) > 0:
account_asset = account.Balance + account.FrozenBalance + position_margin
else:
account_asset = account.Balance + account.FrozenBalance
else:
if len(position) > 0:
account_asset = account.Stocks + account.FrozenStocks + position_margin
else:
account_asset = account.Stocks + account.FrozenStocks
return account_asset
# 收益统计
def calculateProfit(self, ticker):
# 重新获取一下账户持仓与资产
position = _C(exchange.GetPosition)
account = _C(exchange.GetAccount)
# 当前总收益 - 上一次总收益 = 本次的收益
current_profit = (self.getAccountAsset(position, account, ticker) - self._InitAsset) - self._ProfitLocal
self._ProfitLocal += current_profit
if current_profit > 0:
self._TakeProfitCount += 1
self._TradeCount += 1
LogProfit(_N(self._ProfitLocal, 4), " 本次收益:", _N(current_profit, 6))
self.saveUserDatasLocal()
# 是否还够资金下单
def isEnoughAssetToOrder(self, order_size, ticker):
is_enough = True
account = _C(exchange.GetAccount)
if self._IsUsdtStandard:
if account.Balance < order_size * ticker.Last * self._OneSizeInCurrentCoin / self._MarginLevel:
is_enough = False
else:
if account.Stocks < order_size * self._QuarterOneSizeValue / ticker.Last / self._MarginLevel:
is_enough = False
return is_enough
# 按照K线周期运行策略核心
def runInKLinePeriod(self, records):
bar_time = records[-1].Time
if self._RunInKLinePeriod and self._LastBarTime == bar_time:
return False
self._LastBarTime = bar_time
return True
# 趋势判断模块(可编辑具体指标)
def trendJudgment(self, records):
# 检查价格是否穿过均线
def checkPriceCrossEma(price, ema_value):
if self._PriceCrossEMAStatus == 0:
if price <= ema_value:
self._PriceCrossEMAStatus = -1
else:
self._PriceCrossEMAStatus = 1
elif (self._PriceCrossEMAStatus == -1 and price >= ema_value) or (self._PriceCrossEMAStatus == 1 and price <= ema_value):
self._PriceCrossEMAStatus = 2 # 完成穿过
# EMA的多空判断
ema_long = False
ema_short = False
price = records[-2].Close # 已经收盘的K线的收盘价格
ema = TA.EMA(records, self._EmaLength)
ema_value = ema[-2] # 收盘K线对应ema值
ema_upper = ema_value * (1 + self._EmaCoefficient)
ema_lower = ema_value * (1 - self._EmaCoefficient)
checkPriceCrossEma(price, ema_value)
if price > ema_upper:
ema_long = True
elif price < ema_lower:
ema_short = True
# 标准差判断
in_trend = False
if self._UseStddev:
records_data = []
for i in range(len(records)):
records_data.append((records[i].High + records[i].Low) / 2 if self._UseRecordsMiddleValue else records[i].Close)
records_data = np.array(records_data) # 将 list 转换为 np.array
stddev = np.std(records_data, ddof=1) # 使用 numpy 计算标准差
if stddev > self._StddevDeviations:
in_trend = True
else:
in_trend = True
# 趋势判断
long = in_trend and ema_long
short = in_trend and ema_short
if long:
Log("当前趋势为:多", self._EnableMessageSend and "@" or "#00FF7F")
elif short:
Log("当前趋势为:空", self._EnableMessageSend and "@" or "#FF0000")
else:
Log("当前趋势为:震荡", self._EnableMessageSend and "@" or "#007FFF")
return [long, short]
# 止损
def stopLoss(self, position, ticker):
stop_loss_price = 0
price = ticker.Last
if len(position) == 1 and self._UseStopLoss:
if position[0].Type == PD_LONG:
stop_loss_price = position[0].Price * (1 - self._StopLossPercent / 100)
if price < stop_loss_price:
self.coverLong(-1, position[0].Amount)
self.calculateProfit(ticker)
self._TrendWhenTakeProfitOrStopLoss = 1
self._HadStopLoss = True
Log("多单止损。止损价格:", _N(stop_loss_price, 6), ", 持仓价格:", _N(position[0].Price), self._EnableMessageSend and "@" or "#FF1CAE")
elif position[0].Type == PD_SHORT:
stop_loss_price = position[0].Price * (1 + self._StopLossPercent / 100)
if price > stop_loss_price:
self.coverShort(-1, position[0].Amount)
self.calculateProfit(ticker)
self._TrendWhenTakeProfitOrStopLoss = -1
self._HadStopLoss = True
Log("空单止损。止损价格:", _N(stop_loss_price, 6), ", 持仓价格:", _N(position[0].Price), self._EnableMessageSend and "@" or "#FF1CAE")
# 止盈
def takeProfit(self, position, ticker):
take_profit_price = 0
price = ticker.Last
if len(position) == 1 and self._UseTakeProfit:
if position[0].Type == PD_LONG:
take_pr