Chiến lược giao dịch đảo chiều dựa trên chỉ báo Stochastic RSI


Ngày tạo: 2023-09-13 18:00:13 sửa đổi lần cuối: 2023-09-13 18:00:13
sao chép: 0 Số nhấp chuột: 744
1
tập trung vào
1617
Người theo dõi

Chiến lược này được gọi là chiến lược giao dịch đảo ngược dựa trên chỉ số Stochastic RSI. Chiến lược này sử dụng chỉ số Stochastic RSI để xác định hiện tượng mua quá mức và mua quá mức và giao dịch ngược lại khi có sự đảo ngược ở khu vực cực đoan mua quá mức.

Stochastic RSI được tính như sau: lấy dữ liệu của chỉ số RSI làm đầu vào cho tính toán Stochastic, và nhận được tín hiệu K-line và D-line. Nó phản ánh tình trạng RSI quá mua quá bán.

Các giao dịch cụ thể sẽ diễn ra như sau:

  1. Tính toán RSI nhanh để nắm bắt các hiện tượng quá mua và quá bán.

  2. Điểm trung bình chuyển động trọng lượng của RSI, nhận được tín hiệu đường K trong RSI Stochastic.

  3. K trên đường truyền động của nó tạo ra tín hiệu mua; khi đi xuống, tạo ra tín hiệu bán.

  4. Khi đường K gần với khu vực mua quá mức hoặc khu vực bán quá mức, tín hiệu đảo ngược xuất hiện, xem xét giao dịch đảo ngược.

Lợi thế của chiến lược này là sử dụng chỉ số Stochastic RSI để xác định điểm đảo ngược. Tuy nhiên, cần phải tối ưu hóa các tham số và ngăn chặn giao dịch quá mức. Chiến lược dừng lỗ cũng rất cần thiết.

Nhìn chung, Stochastic RSI là một phương pháp phổ biến và thực tế để xác định thời gian đảo ngược. Tuy nhiên, các nhà giao dịch vẫn cần duy trì sự phán đoán về xu hướng lớn và tránh theo đuổi các đợt tăng và giảm trong đợt phục hồi.

Mã nguồn chiến lược
/*backtest
start: 2023-09-05 00:00:00
end: 2023-09-12 00:00:00
period: 5m
basePeriod: 1m
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
*/

// This source code is subject to the terms of the Mozilla Public License 2.0 at https://mozilla.org/MPL/2.0/
// © MightyZinger
//@version=4
strategy(shorttitle="MZ SRSI",title="MightyZinger SRSI Strategy", overlay=false, pyramiding=1, calc_on_order_fills=true, calc_on_every_tick=true, default_qty_type=strategy.fixed, default_qty_value=5,commission_value=0.1)

//heiking ashi calculation
UseHAcandles    = input(true, title="Use Heikin Ashi Candles in Algo Calculations")
////
// === /INPUTS ===

// === BASE FUNCTIONS ===
haClose = UseHAcandles ? security(heikinashi(syminfo.tickerid), timeframe.period, close) : close
haOpen  = UseHAcandles ? security(heikinashi(syminfo.tickerid), timeframe.period, open) : open
haHigh  = UseHAcandles ? security(heikinashi(syminfo.tickerid), timeframe.period, high) : high
haLow   = UseHAcandles ? security(heikinashi(syminfo.tickerid), timeframe.period, low) : low


//Backtest dates
fromMonth = input(defval = 1,    title = "From Month",      type = input.integer, minval = 1, maxval = 12)
fromDay   = input(defval = 1,    title = "From Day",        type = input.integer, minval = 1, maxval = 31)
fromYear  = input(defval = 2021, title = "From Year",       type = input.integer, minval = 1970)
thruMonth = input(defval = 12,    title = "Thru Month",      type = input.integer, minval = 1, maxval = 12)
thruDay   = input(defval = 30,    title = "Thru Day",        type = input.integer, minval = 1, maxval = 31)
thruYear  = input(defval = 2021, title = "Thru Year",       type = input.integer, minval = 1970)

showDate  = input(defval = true, title = "Show Date Range", type = input.bool)

start     = timestamp(fromYear, fromMonth, fromDay, 00, 00)        // backtest start window
finish    = timestamp(thruYear, thruMonth, thruDay, 23, 59)        // backtest finish window
window()  => true       // create function "within window of time"

src = UseHAcandles ? haClose : input(close, title="Source")

TopBand = input(80, step=0.01)
LowBand = input(20, step=0.01)
lengthRSI = input(2, minval=1,title="RSI Length")
lengthMA = input(50, minval=1,title="MA Length")
lengthRSI_MA= input(5, minval=1,title="RSI MA Length")


//RSI Source
maType = input(title="MA Type", type=input.string, defval="LRC", options=["SMA","EMA","DEMA","TEMA","LRC","WMA","MF","VAMA","TMA","HMA", "JMA", "Kijun v2", "EDSMA","McGinley"])
rsiMaType = input(title="RSI MA Type", type=input.string, defval="TMA", options=["SMA","EMA","DEMA","TEMA","LRC","WMA","MF","VAMA","TMA","HMA", "JMA", "Kijun v2", "EDSMA","McGinley"])

//MA Function

//           Pre-reqs
//
tema(src, len) =>
    ema1 = ema(src, len)
    ema2 = ema(ema1, len)
    ema3 = ema(ema2, len)
    (3 * ema1) - (3 * ema2) + ema3
kidiv = input(defval=1,maxval=4,  title="Kijun MOD Divider")

jurik_phase = input(title="* Jurik (JMA) Only - Phase", type=input.integer, defval=3)
jurik_power = input(title="* Jurik (JMA) Only - Power", type=input.integer, defval=1)
volatility_lookback = input(10, title="* Volatility Adjusted (VAMA) Only - Volatility lookback length")
//                  MF
beta = input(0.8,minval=0,maxval=1,step=0.1,  title="Modular Filter, General Filter Only - Beta")
feedback = input(false, title="Modular Filter Only - Feedback")
z = input(0.5,title="Modular Filter Only - Feedback Weighting",step=0.1, minval=0, maxval=1)
//EDSMA
ssfLength = input(title="EDSMA - Super Smoother Filter Length", type=input.integer, minval=1, defval=20)
ssfPoles = input(title="EDSMA - Super Smoother Filter Poles", type=input.integer, defval=2, options=[2, 3])

//----
//                  EDSMA
get2PoleSSF(src, length) =>
    PI = 2 * asin(1)
    arg = sqrt(2) * PI / length
    a1 = exp(-arg)
    b1 = 2 * a1 * cos(arg)
    c2 = b1
    c3 = -pow(a1, 2)
    c1 = 1 - c2 - c3
    
    ssf = 0.0
    ssf := c1 * src + c2 * nz(ssf[1]) + c3 * nz(ssf[2])

get3PoleSSF(src, length) =>
    PI = 2 * asin(1)

    arg = PI / length
    a1 = exp(-arg)
    b1 = 2 * a1 * cos(1.738 * arg)
    c1 = pow(a1, 2)

    coef2 = b1 + c1
    coef3 = -(c1 + b1 * c1)
    coef4 = pow(c1, 2)
    coef1 = 1 - coef2 - coef3 - coef4

    ssf = 0.0
    ssf := coef1 * src + coef2 * nz(ssf[1]) + coef3 * nz(ssf[2]) + coef4 * nz(ssf[3])

//          MA Main function
ma(type, src, len) =>
    float result = 0
    if type=="TMA"
        result := sma(sma(src, ceil(len / 2)), floor(len / 2) + 1)
    if type=="MF"
        ts=0.,b=0.,c=0.,os=0.
        //----
        alpha = 2/(len+1)
        a = feedback ? z*src + (1-z)*nz(ts[1],src) : src
        //----
        b := a > alpha*a+(1-alpha)*nz(b[1],a) ? a : alpha*a+(1-alpha)*nz(b[1],a)
        c := a < alpha*a+(1-alpha)*nz(c[1],a) ? a : alpha*a+(1-alpha)*nz(c[1],a)
        os := a == b ? 1 : a == c ? 0 : os[1]
        //----
        upper = beta*b+(1-beta)*c
        lower = beta*c+(1-beta)*b 
        ts := os*upper+(1-os)*lower
        result := ts
    if type=="LRC"
        result := linreg(src, len, 0)
    if type=="SMA" // Simple
        result := sma(src, len)
    if type=="EMA" // Exponential
        result := ema(src, len)
    if type=="DEMA" // Double Exponential
        e = ema(src, len)
        result := 2 * e - ema(e, len)
    if type=="TEMA" // Triple Exponential
        e = ema(src, len)
        result := 3 * (e - ema(e, len)) + ema(ema(e, len), len)
    if type=="WMA" // Weighted
        result := wma(src, len)
    if type=="VAMA" // Volatility Adjusted
        /// Copyright © 2019 to present, Joris Duyck (JD)
        mid=ema(src,len)
        dev=src-mid
        vol_up=highest(dev,volatility_lookback)
        vol_down=lowest(dev,volatility_lookback)
        result := mid+avg(vol_up,vol_down)
    if type=="HMA" // Hull
        result := wma(2 * wma(src, len / 2) - wma(src, len), round(sqrt(len)))
    if type=="JMA" // Jurik
        /// Copyright © 2018 Alex Orekhov (everget)
        /// Copyright © 2017 Jurik Research and Consulting.
        phaseRatio = jurik_phase < -100 ? 0.5 : jurik_phase > 100 ? 2.5 : jurik_phase / 100 + 1.5
        beta = 0.45 * (len - 1) / (0.45 * (len - 1) + 2)
        alpha = pow(beta, jurik_power)
        jma = 0.0
        e0 = 0.0
        e0 := (1 - alpha) * src + alpha * nz(e0[1])
        e1 = 0.0
        e1 := (src - e0) * (1 - beta) + beta * nz(e1[1])
        e2 = 0.0
        e2 := (e0 + phaseRatio * e1 - nz(jma[1])) * pow(1 - alpha, 2) + pow(alpha, 2) * nz(e2[1])
        jma := e2 + nz(jma[1])
        result := jma
    if type=="Kijun v2"
        kijun = avg(lowest(len), highest(len))//, (open + close)/2)
        conversionLine = avg(lowest(len/kidiv), highest(len/kidiv))
        delta = (kijun + conversionLine)/2
        result :=delta
    if type=="McGinley"
        mg = 0.0
        mg := na(mg[1]) ? ema(src, len) : mg[1] + (src - mg[1]) / (len * pow(src/mg[1], 4))
        result :=mg
    if type=="EDSMA"
    
        zeros = src - nz(src[2])
        avgZeros = (zeros + zeros[1]) / 2
        
        // Ehlers Super Smoother Filter 
        ssf = ssfPoles == 2
             ? get2PoleSSF(avgZeros, ssfLength)
             : get3PoleSSF(avgZeros, ssfLength)
        
        // Rescale filter in terms of Standard Deviations
        stdev = stdev(ssf, len)
        scaledFilter = stdev != 0
             ? ssf / stdev
             : 0
        
        alpha = 5 * abs(scaledFilter) / len
        
        edsma = 0.0
        edsma := alpha * src + (1 - alpha) * nz(edsma[1])
        result :=  edsma
    result


//Indicator
hline(TopBand, color=color.red,linestyle=hline.style_dotted, linewidth=2)
hline(LowBand, color=color.green, linestyle=hline.style_dashed, linewidth=2)

// RSI Definition
rsiSource = ma(maType, src , lengthMA)
frsi = rsi(rsiSource, lengthRSI)
fsma = ma(rsiMaType, frsi , lengthRSI_MA)

plot(frsi,title='frsi', color= color.lime, linewidth=3)
fsmaColor=color.new(color.red, 80)
plot(fsma,title='fsma', color= fsmaColor , linewidth=3, style=plot.style_area)

//Background
bgcolor(frsi > fsma ? color.lime : color.orange, 80)

longcondition = crossover (frsi , fsma)
shortcondition = crossunder(frsi , fsma)


////////////////////////////////
//if (longcondition)
//    strategy.entry("BUY", strategy.long, when = window())
    
//if (shortcondition)
//    strategy.close("SELL", strategy.short, when = window())

strategy.entry(id="long", long = true, when = longcondition and window())
strategy.close("long", when = shortcondition and window())