गति सूचक ब्रेकआउट ट्रेडिंग रणनीति


निर्माण तिथि: 2023-09-18 21:28:22 अंत में संशोधित करें: 2023-09-18 21:28:22
कॉपी: 0 क्लिक्स: 691
1
ध्यान केंद्रित करना
1617
समर्थक

अवलोकन

इस रणनीति का उपयोग गतिशीलता संकेतक बुरिन बैंड के लिए किया जाता है, जो मुख्य रूप से यह निर्धारित करता है कि क्या कीमतें बुरिन बैंड को तोड़कर नीचे की ओर जा रही हैं और एक खरीद या बिक्री संकेत भेजती हैं।

सिद्धांत

यह रणनीति मुख्य रूप से ब्रिन बैंड सूचक के आधार पर प्रवृत्ति की दिशा का निर्धारण करती है। ब्रिन बैंड एक बैंड जैसा क्षेत्र है जो एक चलती औसत और उसके मानक अंतर से बना है। ब्रिन बैंड का मध्य रेखा n-दिन की चलती औसत है, ऊपरी पट्टी मध्य रेखा + 2 गुना मानक अंतर है, और निचली पट्टी मध्य रेखा -2 गुना मानक अंतर है। जब कीमत ऊपरी पट्टी के करीब होती है तो ओवरबॉय होती है और जब यह नीचे की पट्टी के करीब होती है तो ओवरसोल्ड होती है।

विशेष रूप से, रणनीति पहले n दिनों के लिए उच्चतम और निम्नतम कीमतों की गणना करती है, और मध्य कीमतों की गणना करती है (((उच्चतम मूल्य + निम्नतम मूल्य) / 2) । फिर, मध्यस्थ मूल्य और मध्यस्थ मूल्य की दूरी के लिए एक भारित चलती औसत की गणना की जाती है, जो कि ब्रिन बैंड की मध्य रेखा है, जो कि मध्य रेखा के नीचे 2 गुना मानक विचलन के रूप में है।

यदि समापन की कीमत ऊपरी पट्टी को तोड़ती है, तो यह संकेत देती है कि यह ऊपर की ओर जा रही है; यदि यह नीचे की ओर है, तो यह संकेत देती है कि यह नीचे की ओर जा रही है। जब यह ऊपरी पट्टी को तोड़ता है, तो यह अधिक होता है, और जब यह नीचे की पट्टी को तोड़ता है, तो यह खाली हो जाता है।

इसके अलावा, रणनीति में रिवर्स ओपन पोजीशन मैकेनिज्म की भी शुरुआत की गई है। जब कीमत बुरिन बैंड को पार कर जाती है, तो यदि MACD गिरावट पर है, तो रिवर्स मार्केट ऑपरेशन का उपयोग किया जाता है।

लाभ

  1. ब्रिन बैंड का उपयोग प्रवृत्ति की दिशा का आकलन करने के लिए किया जाता है, जिसमें कुछ प्रवृत्ति ट्रैकिंग क्षमता होती है।

  2. रिवर्स पोजीशन डिज़ाइन से नकारात्मक लाभ प्राप्त होता है।

  3. ब्रिन बैंड अवधि, मानक अंतर गुणांक आदि को अनुकूलित किया जा सकता है, जो विभिन्न अवधि के लेनदेन के लिए उपयुक्त है।

  4. जोखिम को कम करने के लिए रिवर्स-ओपन बंद करें।

जोखिम और उपाय

  1. ब्रिन बैंड अक्सर उच्च अस्थिरता वाले शेयरों के लिए उपयोग किया जाता है, जो लंबी अवधि के संसाधनों या सूचकांकों जैसी किस्मों के लिए उपयुक्त नहीं हो सकता है। विभिन्न चक्रों के मापदंडों की प्रभावशीलता का परीक्षण किया जा सकता है।

  2. एक ब्रेकडाउन सिग्नल में एक झूठी ब्रेकडाउन हो सकती है। सिग्नल को अन्य कारकों के साथ जोड़ा जा सकता है।

  3. रिवर्स पोजीशन खोलने से घाटा बढ़ सकता है। रिवर्स पोजीशन खोलने के लिए मॉड्यूल को बंद किया जा सकता है।

  4. यह एक बड़ी निकासी हो सकती है।

अनुकूलन दिशा

  1. प्रवृत्ति फ़िल्टर को शामिल करने पर विचार किया जा सकता है ताकि अनिश्चित दिशा के साथ बाजार में उतार-चढ़ाव से बचा जा सके।

  2. अधिक उपयुक्त मापदंडों के लिए ब्रिन बैंड मानक अंतर गुणांक का परीक्षण किया जा सकता है।

  3. एकल घाटे को नियंत्रित करने के लिए स्टॉप लॉस रणनीति शुरू की जा सकती है।

  4. ट्रेडिंग सिग्नल को स्पष्ट करने के लिए, स्टॉक खोलने और स्टॉक बढ़ाने के तर्क को अनुकूलित किया जा सकता है

संक्षेप

इस रणनीति के आधार पर संकेतकों, निर्णय मूल्य प्रवृत्ति तोड़ने के लिए व्यापार. सरल पैरामीटर सेट का उपयोग कर सकते हैं बुनियादी प्रवृत्ति ट्रैकिंग रणनीति. लेकिन वहाँ कुछ झूठी तोड़ने का जोखिम है, अन्य संकेतकों के साथ संयोजन में फ़िल्टर करने की जरूरत है. आप आगे पैरामीटर सेटिंग, रोक हानिकारक रणनीति आदि का अनुकूलन कर सकते हैं जोखिम को नियंत्रित करने के लिए.

Overview

This strategy uses Bollinger Bands momentum indicator for breakout trading, mainly judging if price breaks through the upper or lower Bollinger Bands for trading signals.

Principles

The strategy is primarily based on Bollinger Bands indicator to determine trend direction. Bollinger Bands consist of a middle band based on a moving average and upper/lower bands defined by standard deviations. The middle band is a n-period moving average, the upper band is middle band + 2 standard deviations, and the lower band is middle band - 2 standard deviations. When price approaches the upper band it indicates overbought conditions, and when it approaches the lower band it signals oversold conditions.

Specifically, the strategy first calculates the highest high and lowest low over last n periods, and the middle price ((highest high + lowest low)/2). It then calculates the distance between close price and middle price, uses exponential moving average of the distance to form the middle band, and adds/subtracts 2 times standard deviation above and below to form the upper and lower bands.

When close price breaks through the upper band, it signals an uptrend; when it breaks the lower band, it signals a downtrend. The strategy goes long when the upper band is broken, and goes short when the lower band is broken.

In addition, the strategy incorporates a counter-trend mechanism. When price breaks the upper band but MACD is falling, it will take a counter-trend short position.

Advantages

  1. Using Bollinger Bands to determine trend direction provides certain trend following capability.

  2. Counter-trend design allows profiting from reversals.

  3. Customizable parameters like period and standard deviation multiples make it adaptable to different trading horizons.

  4. Disable counter-trend trading to reduce risk.

Risks and Mitigations

  1. Bollinger Bands work best for high volatility stocks, may not be suitable for stable commodities or indices. Can test different period parameters.

  2. Breakout signals may have false breakouts. Can add filters with other indicators.

  3. Counter-trend trading can further increase losses. Can disable counter-trend module.

  4. Drawdowns may be significant. Can adjust position sizing.

Enhancement Opportunities

  1. Consider adding trend filter to avoid whipsaw in non-directional markets.

  2. Test different standard deviation multiples to find optimal parameters.

  3. Incorporate stop loss to control single trade loss.

  4. Optimize entry and add-on logic for clearer trading signals.

Summary

The strategy uses Bollinger Bands as the primary indicator and trades based on trend breakouts. With simple parameters it provides basic trend following capabilities. But false breakout risks exist, requiring additional filters. Parameters, stop loss and risk controls can be enhanced. Overall it serves as a reasonable baseline breakout strategy.

रणनीति स्रोत कोड
/*backtest
start: 2023-08-18 00:00:00
end: 2023-09-17 00:00:00
period: 4h
basePeriod: 15m
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
*/

//Noro
//2018

//@version=2
strategy("Noro's Bands Scalper Strategy v1.6", shorttitle = "Scalper str 1.6", overlay = true, default_qty_type = strategy.percent_of_equity, default_qty_value = 100.0, pyramiding = 0)

//Settings
needlong = input(true, defval = true, title = "Long")
needshort = input(true, defval = true, title = "Short")
takepercent = input(0, defval = 0, minval = 0, maxval = 1000, title = "take, %")
needbe = input(true, defval = true, title = "Bands Entry")
needct = input(false, defval = false, title = "Counter-trend entry")
bodylen = input(10, defval = 10, minval = 0, maxval = 50, title = "Body length")
trb = input(1, defval = 1, minval = 1, maxval = 5, title = "Trend bars")
len = input(20, defval = 20, minval = 2, maxval = 200, title = "Period")
needbb = input(true, defval = true, title = "Show Bands")
needbg = input(true, defval = true, title = "Show Background")
fromyear = input(1900, defval = 1900, minval = 1900, maxval = 2100, title = "From Year")
toyear = input(2100, defval = 2100, minval = 1900, maxval = 2100, title = "To Year")
frommonth = input(01, defval = 01, minval = 01, maxval = 12, title = "From Month")
tomonth = input(12, defval = 12, minval = 01, maxval = 12, title = "To Month")
src = close

//PriceChannel 1
lasthigh = highest(src, len)
lastlow = lowest(src, len)
center = (lasthigh + lastlow) / 2

//Distance
dist = abs(src - center)
distsma = sma(dist, len)
hd = center + distsma
ld = center - distsma
hd2 = center + distsma * 2
ld2 = center - distsma * 2

//Trend
chd = close > hd
cld = close < ld
uptrend = trb == 1 and chd ? 1 : trb == 2 and chd and chd[1] ? 1 : trb == 3 and chd and chd[1] and chd[2] ? 1 : trb == 4 and chd and chd[1] and chd[2] and chd[3] ? 1 : trb == 5 and chd and chd[1] and chd[2] and chd[3] and chd[4] ? 1 : 0
dntrend = trb == 1 and cld ? 1 : trb == 2 and cld and cld[1] ? 1 : trb == 3 and cld and cld[1] and cld[2] ? 1 : trb == 4 and cld and cld[1] and cld[2] and cld[3] ? 1 : trb == 5 and cld and cld[1] and cld[2] and cld[3] and cld[4] ? 1 : 0
trend = dntrend == 1 and high < center ? -1 : uptrend == 1 and low > center ? 1 : trend[1]

//trend = close < ld and high < center ? -1 : close > hd and low > center ? 1 : trend[1]

//Lines
colo = needbb == false ? na : black
plot(hd2, color = colo, linewidth = 1, transp = 0, title = "High band 2")
plot(hd, color = colo, linewidth = 1, transp = 0, title = "High band 1")
plot(center, color = colo, linewidth = 1, transp = 0, title = "center")
plot(ld, color = colo, linewidth = 1, transp = 0, title = "Low band 1")
plot(ld2, color = colo, linewidth = 1, transp = 0, title = "Low band 2")

//Background
col = needbg == false ? na : trend == 1 ? lime : red
bgcolor(col, transp = 80)

//Body
body = abs(close - open)
smabody = ema(body, 30) / 10 * bodylen

//Signals
bar = close > open ? 1 : close < open ? -1 : 0
up7 = trend == 1 and ((bar == -1 and bar[1] == -1) or (body > smabody and bar == -1)) ? 1 : 0
dn7 = trend == 1 and ((bar == 1 and bar[1] == 1) or (close > hd and needbe == true)) and close > strategy.position_avg_price * (100 + takepercent) / 100 ? 1 : 0
up8 = trend == -1 and ((bar == -1 and bar[1] == -1) or (close < ld2 and needbe == true)) and close < strategy.position_avg_price * (100 - takepercent) / 100 ? 1 : 0
dn8 = trend == -1 and ((bar == 1 and bar[1] == 1) or (body > smabody and bar == 1)) ? 1 : 0

if up7 == 1 or up8 == 1 
    strategy.entry("Long", strategy.long, needlong == false ? 0 : trend == -1 and needct == false ? 0 : na, when=(time > timestamp(fromyear, frommonth, 01, 00, 00) and time < timestamp(toyear, tomonth, 31, 00, 00)))

if dn7 == 1 or dn8 == 1
    strategy.entry("Short", strategy.short, needshort == false ? 0 : trend == 1 and needct == false ? 0 : na, when=(time > timestamp(fromyear, frommonth, 01, 00, 00) and time < timestamp(toyear, tomonth, 31, 00, 00)))
    
if time > timestamp(toyear, tomonth, 31, 00, 00)
    strategy.close_all()