Strategi Penembusan Tren


Tanggal Pembuatan: 2023-09-28 15:54:32 Akhirnya memodifikasi: 2023-09-28 15:54:32
menyalin: 1 Jumlah klik: 701
1
fokus pada
1617
Pengikut

Ringkasan

Strategi ini bertujuan untuk menangkap tren kuat di pasar cryptocurrency, menggunakan multi-channel dan moving averages untuk mengidentifikasi sinyal yang membentuk tren, dan menggabungkan kuantitas yang dapat menyaring terobosan palsu, sambil menggunakan stop loss adaptif untuk mengunci keuntungan yang dapat dicapai di pasar yang sedang tren.

Prinsip Strategi

Strategi ini menggunakan kombinasi dari saluran cepat, saluran lambat, dan rata-rata bergerak cepat untuk mengidentifikasi tren. Pengaturan parameter saluran cepat lebih sensitif, digunakan untuk menangkap fluktuasi harga jangka pendek; parameter saluran lambat lebih lambat, digunakan untuk menilai tren besar; parameter saluran bergerak cepat berada di antara keduanya, menghasilkan sinyal perdagangan ketika melintasi saluran.

Secara khusus, ini pertama-tama menghitung lintasan atas dan bawah saluran cepat, dan rata-rata bergerak. Ketika harga menembus lintasan atas, sinyal stop timbul jika lintasan bawah saluran lambat juga berada di atas rata-rata bergerak; sebaliknya, ketika lintasan bawah pecah untuk menentukan apakah lintasan saluran lambat berada di bawah rata-rata bergerak, sinyal stop timbul.

Selain itu, ia juga mendeteksi K-line form, yang meminta beberapa K-line diurutkan untuk memfilter kebocoran palsu; dan menghitung indikator volatilitas harga, untuk menghindari pasar terjebak di dalam terowongan yang bergoyang; menambahkan indikator volume perdagangan untuk memastikan waktu yang tepat untuk menembus.

Untuk stop loss, strategi ini menggunakan stop loss adaptif. Dengan cara ini, stop loss akan disesuaikan secara dinamis dengan pergerakan yang terjadi dalam beberapa waktu terakhir. Hal ini memungkinkan untuk menelusuri sebanyak mungkin tren yang terjadi, sambil memastikan stop loss.

Analisis Keunggulan

Keuntungan terbesar dari strategi ini adalah bahwa aturan penilaian untuk membentuk sinyal perdagangan yang lebih ketat, dapat secara efektif memfilter non-trending false breakout, dan benar-benar menangkap titik-titik perubahan tren pasar. Secara khusus, ada beberapa aspek utama:

  1. Kombinasi multi-channel dan moving averages membuat penilaian lebih ketat dan mengurangi kemungkinan kesalahan penilaian.

  2. K-line diurutkan untuk menghindari salah sinyal pada K-line tunggal.

  3. Dengan mengkombinasikan indikator tingkat perubahan harga, Anda dapat menentukan apakah Anda masuk ke dalam penataan dan menghindari kehilangan peluang untuk membalikkannya.

  4. Dengan penambahan indikator energi kuantitatif, sinyal hanya akan muncul bersama dengan harga kuantitatif, untuk menghindari terobosan yang tidak efektif.

  5. Adaptive Stop Loss Mechanism, yang dapat mengunci keuntungan tren secara maksimal, dengan asumsi terjamin stop loss.

Oleh karena itu, strategi ini secara keseluruhan memiliki fitur seperti konfigurasi yang dioptimalkan, kebijaksanaan dalam pengambilan keputusan, dan adaptasi stop loss, yang sangat cocok untuk menangkap tren.

Analisis risiko

Meskipun ada banyak perbaikan dalam strategi ini untuk memfilter penembakan palsu dan kecenderungan penyadapan, masih ada beberapa risiko yang perlu diperhatikan:

  1. Pengaturan parameter terlalu rumit, kombinasi parameter yang berbeda memiliki efek yang berbeda, perlu melalui banyak pengujian untuk menemukan parameter terbaik, pengaturan yang tidak tepat dapat menghasilkan terlalu banyak sinyal yang salah.

  2. Rata-rata cepat dan celah saluran lebih dari satu jam, mudah menghasilkan sering membuka posisi dan posisi kosong, tidak menguntungkan untuk trend yang bertahan lama.

  3. Adaptasi Stop Loss Mechanism Stop Loss margin dihitung berdasarkan SDD, yang mungkin terlalu kecil untuk situasi ekstrem.

  4. Terlalu bergantung pada indikator teknis, sulit untuk bereaksi terhadap perubahan mendasar yang signifikan.

  5. Strategi ini adalah strategi trend-following, yang berkinerja buruk dalam pasar yang bergoyang.

Untuk mengatasi risiko ini, disarankan untuk mengambil langkah-langkah berikut:

  1. Melakukan pengembalian yang memadai untuk menentukan kombinasi parameter yang optimal, dan juga dapat mempertimbangkan untuk mengoptimalkan parameter menggunakan metode seperti pembelajaran mesin.

  2. Jarak saluran yang lebih lebar dan periode rata-rata bergerak dapat diperpanjang secara tepat untuk mengurangi frekuensi penempatan yang tidak perlu.

  3. Model perhitungan volatilitas yang lebih canggih seperti hedge fund dapat dipertimbangkan.

  4. Perhatikan informasi dasar yang tersedia dan hindari perdagangan berdasarkan indikator teknis saja.

  5. Untuk meningkatkan penilaian terhadap kondisi pasar, penundaan perdagangan di pasar yang bergejolak.

Arah optimasi

Strategi ini dapat dioptimalkan lebih lanjut dengan cara:

  1. Menambahkan algoritma pembelajaran mesin untuk mengoptimalkan parameter secara otomatis. Dapat mencatat kinerja parameter dalam berbagai lingkungan pasar, membuat tabel kueri, dan mengoptimalkan dinamika.

  2. Meningkatkan penilaian terhadap kondisi pasar, seperti meningkatkan penilaian apakah pasar sedang tren atau bergejolak, dan menghentikan perdagangan di pasar yang bergejolak untuk menghindari kerugian yang tidak perlu.

  3. Optimalkan strategi stop loss, dan pertimbangkan cara stop loss lainnya seperti tracking stop loss, stop loss proporsional, dan lain-lain.

  4. Menambahkan faktor-faktor dasar, memberi peringatan ketika terjadi peristiwa fundamental yang signifikan, untuk menghindari kerugian hanya dengan indikator teknis.

  5. Optimalisasi portofolio, menggabungkan strategi ini dengan portofolio strategi lain yang tidak relevan, dapat menyebarkan risiko lebih jauh.

  6. Tergabung dalam kerangka perdagangan kuantitatif, sinyal pelaksanaan otomatis, dan kontrol risiko yang ketat.

Meringkaskan

Secara keseluruhan, strategi ini sangat cocok untuk menangkap peluang tren di pasar cryptocurrency. Ini menggunakan sinyal perdagangan multi-saluran dan rata-rata bergerak, dan secara efektif menyaring kebisingan dari terobosan palsu, berhasil mengunci keuntungan tren. Namun, perlu diperhatikan pengoptimalan parameter, metode stop loss, penilaian keadaan pasar, dll.

Kode Sumber Strategi
/*backtest
start: 2022-09-21 00:00:00
end: 2023-09-27 00:00:00
period: 1d
basePeriod: 1h
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
*/

//@version=4
strategy("Extremely Overfit", overlay=true, commission_type=strategy.commission.percent, commission_value=.16, default_qty_type=strategy.percent_of_equity, default_qty_value=100, pyramiding = 1)
price = close

goLong = input(title="go long?", type=input.bool, defval=true)
goShort = input(title="go short?", type=input.bool, defval=true)
//trendRestrict = input(title="basic trend restriction?", type=input.bool, defval=false)
dynamicRestrict = true //input(title="dynamic trend restriction?", type=input.bool, defval=true)
longtrendimpt = true //input(title="additional weight on long-term trends?", type=input.bool, defval=true)
volRestrict = true //input(title="volume restriction?", type=input.bool, defval=true)
conservativeClose = false //input(title="conservative order closing?", type=input.bool, defval=false)

Restrictiveness = input ( -40,step=10,title ="Restrictiveness (higher = make fewer trades)")
volatilityImportance = 3.2 //input( 3.2, step = 0.1, minval = 0)
fastChannelLength = input( 6 )
fastChannelMargin = input ( 3.2, step = 0.1, minval = 0)
slowChannelLength = input ( 6, step = 1, minval = 0)
slowChannelMargin = input ( 1.5, step = 0.1, minval = 0)
fastHMAlength = input (4, step = 1, minval = 0)
stopLoss = input( 3, step = 0.1, minval = 0)
//altClosePeriod = input( 27, step = 1, minval = 1)
//altCloseFactor = input( 4.9, step = 0.1)
stopLossFlexibility = 50 //input(50, step=10, title="effect of volatility on SL?")
volumeMAlength = 14 //input ( 14, step = 1, minval = 1)
volumeVolatilityCutoff = 3.8 // ( 3.8, step = 1, minval = 0)
trendSensitivity = 3.8 //input ( 3.8, step = 0.1)
obvLookback = 10 //input(10, step = 10, minval = 10)
obvCorrThreshold = 0.89 //input(0.89, step = 0.01)
ROClength = 80 //input( 80, step = 10)
ROCcutoff = 5.6 //input( 5.6, step=0.1)

trendRestrict = false
//trendLookback = input ( 360, step = 10, minval = 10)
//longTrendLookback = input(720, step = 10, minval = 10)
//longTrendImportance = input(1.5, step = 0.05)
trendLookback = 360
longTrendLookback = 720
longTrendImportance = 1.5

//conservativeness = input( 2.4, step = 0.1)
conservativeness = 0
//trendPower = input( 0, step=1)
trendPower = 0
//conservativenessLookback = input( 650, step = 10, minval = 0)
conservativenessLookback = 10
//consAffectFactor = input( 0.85,step=0.01)
consAffectFactor = 0.85
//volatilityLookback = input(50, step=1, minval=2)
volatilityLookback = int(50)
recentVol = stdev(price,volatilityLookback)/sqrt(volatilityLookback)

//price channel

fastChannel = ema(price, fastChannelLength)
fastChannelUB = fastChannel * (1 + (float(fastChannelMargin) / 1000)) + (recentVol * (float(volatilityImportance) * (1 + (Restrictiveness/100))))
fastChannelLB = fastChannel * (1 - (float(fastChannelMargin) / 1000)) - (recentVol * (float(volatilityImportance) * (1 + (Restrictiveness/100))))
fchU = ((fastChannelUB < open) and (fastChannelUB < close))
fchL = ((fastChannelLB > open) and (fastChannelLB > close))
//plot(fastChannelUB)
//plot(fastChannelLB)

//slow channel
//slowChannelLBmargin = input ( 2, step = 0.1, minval = 0 )
slowChannel = ema(ema(price,slowChannelLength),slowChannelLength)
slowChannelUB = slowChannel * (1 + (float(slowChannelMargin) / 2000)) + (recentVol * (float(volatilityImportance) * (1 + (Restrictiveness/100))))
slowChannelLB = slowChannel * (1 - (float(slowChannelMargin) / 2000)) - (recentVol * (float(volatilityImportance) * (1 + (Restrictiveness/100))))
schU = ((slowChannelUB < close))
schL = ((slowChannelLB > close))
cschU = (((slowChannelUB * (1 + conservativeness)) < close))
cschL = (((slowChannelUB * (1 - conservativeness)) > close))
//plot(slowChannel,color = #00FF00)
//plot(slowChannelUB,color = #00FF00)
//plot(slowChannelLB,color = #00FF00)


fastHMA = hma(price,fastHMAlength)
fastAboveUB = (fastHMA > slowChannelUB)
fastBelowLB = (fastHMA < slowChannelLB)
//plot(fastHMA, color = 	#FF0000, linewidth = 2)

//consecutive candles
//consecutiveCandlesReq = input(1, step = 1, minval = 1, maxval = 4)
consecutiveCandlesReq = 1
consecutiveBullReq = float(consecutiveCandlesReq)
consecutiveBearReq = float(consecutiveCandlesReq)
cbull = ((close[0] > close[1]) and (consecutiveBullReq == 1)) or (((close[0] > close[1]) and (close[1] > close[2])) and consecutiveBullReq == 2) or (((close[0] > close[1]) and (close[1] > close[2]) and (close[2] > close[3])) and consecutiveBullReq == 3) or (((close[0] > close[1]) and (close[1] > close[2]) and (close[2] > close[3]) and (close[3] > close[4])) and consecutiveBullReq == 4)
cbear = ((close[0] < close[1]) and (consecutiveBearReq == 1)) or (((close[0] < close[1]) and (close[1] < close[2])) and consecutiveBearReq == 2) or (((close[0] < close[1]) and (close[1] < close[2]) and (close[2] < close[3])) and consecutiveBearReq == 3) or (((close[0] < close[1]) and (close[1] < close[2]) and (close[2] < close[3]) and (close[3] < close[4])) and consecutiveBearReq == 4)

//trend detection
//trendCutoff = input(0, step = 0.1)
trendCutoff = 0
trendDetectionPct = float(trendCutoff/100)
trendVal = float((close[0] - close[trendLookback])/close[0])
trendUp = (trendVal > (0 + trendDetectionPct))
trendDown = (trendVal < (0 - trendDetectionPct))
//plot(trendVal+36.5,linewidth=2)

// peak indicators
peakHigh = ((fastHMA > fastChannelUB) and (fastChannelLB > slowChannelUB))
peakLow = ((fastHMA < fastChannelLB) and (fastChannelUB < slowChannelLB))
TpeakHigh = (fastHMA > fastChannelUB) and (fastChannelUB > slowChannelUB)
TpeakLow = (fastHMA < fastChannelUB) and (fastChannelLB < slowChannelLB)
//TpeakHigh = (fastHMA > fastChannelUB) and (fastChannelLB > avg(slowChannelUB,slowChannelLB))
//TpeakLow = (fastHMA < fastChannelUB) and (fastChannelUB < avg(slowChannelLB,slowChannelUB))
//TpeakHigh = ((crossover(fastHMA,fastChannelUB)) and (fastChannelLB > slowChannelUB))
//TpeakLow = ((crossover(fastChannelLB,fastHMA)) and (fastChannelUB < slowChannelLB))
//TpeakHigh = (fastHMA > (fastChannelUB * (1 + (trendPower/800)))) and (fastChannelUB > (slowChannelUB * (1 + (trendPower/800))))
//TpeakLow = (fastHMA < (fastChannelUB * (1 - (trendPower/800)))) and (fastChannelLB < (slowChannelLB * (1 - (trendPower/800))))
//TpeakHigh = (fastHMA > (fastChannelUB * (1 + (trendPower/800)))) and (avg(fastChannelUB,fastChannelLB) > (slowChannelUB * (1 + (trendPower/800))))
//TpeakLow = (fastHMA < (fastChannelUB * (1 - (trendPower/800)))) and (avg(fastChannelLB,fastChannelUB) < (slowChannelLB * (1 - (trendPower/800))))
//plot(fastChannelUB * (1 + (trendPower/700)), color=#FF69B4)

// and for closing...
closeLong = (crossover(fastHMA,fastChannelUB) and (fastChannelLB > slowChannelUB))
closeShort = (crossover(fastChannelLB,fastHMA) and (fastChannelUB < slowChannelLB))
//closeLong = (crossover(fastHMA,fastChannelUB) and (fastChannelLB > slowChannelUB)) or (roc(price,altClosePeriod) > altCloseFactor)
//closeShort = (crossover(fastChannelLB,fastHMA) and (fastChannelUB < slowChannelLB))  or (roc(price,altClosePeriod) < (altCloseFactor) * -1)
//closeLong = (crossover(fastHMA,fastChannelUB) and (fastChannelLB > slowChannelUB)) or (((price - fastChannelUB) > (altCloseFactor * abs(((fastChannelUB - fastChannelLB)/2) - ((slowChannelUB - slowChannelLB)/2)))) and (fastChannelLB > slowChannelUB))
//closeShort = (crossover(fastChannelLB,fastHMA) and (fastChannelUB < slowChannelLB)) or (((fastChannelLB - price) > (altCloseFactor * abs(((fastChannelUB - fastChannelLB)/2) - ((slowChannelUB - slowChannelLB)/2)))) and (fastChannelUB < slowChannelLB))
//closeLong = crossover(fastHMA,fastChannelUB) and ((fastChannelLB[0] - fastChannelLB[1]) < (slowChannelUB[0] - slowChannelUB[1]))
//closeShort = crossover(fastChannelLB,fastHMA) and ((fastChannelUB[0] - fastChannelUB[1]) > (slowChannelLB[0] - slowChannelLB[1]))


//stop-loss
priceDev = stdev(price,trendLookback) * (1 + stopLossFlexibility/5)
stopLossMod = stopLoss * (1 + (priceDev/price))
//longStopPrice  = strategy.position_avg_price * (1 - (stopLoss/100))
//shortStopPrice = strategy.position_avg_price * (1 + (stopLoss/100))
longStopPrice  = strategy.position_avg_price * (1 - (stopLossMod/100))
shortStopPrice = strategy.position_avg_price * (1 + (stopLossMod/100))


// volume
volumeMA = ema(volume,volumeMAlength)
volumeDecrease = ((not volRestrict ) or (volumeMA[0] < ema(volumeMA[1] * (1 - (volumeVolatilityCutoff/100)),5)))
volumeCutoff = ema(volumeMA[1] * (1 - (volumeVolatilityCutoff/100)),5)
//plot(volumeMA)
//plot(volumeCutoff)

// detect volatility
//trendinessLookback = input ( 600, step = 10, minval = 0)
trendinessLookback = trendLookback
trendiness = (stdev(price,trendinessLookback)/price) * (1 - (Restrictiveness/100))
longtermTrend = ((price - price[longTrendLookback])/price)
//dynamicTrendDetected = (dynamicRestrict and (abs(trendiness * 100) < trendSensitivity))
dynamicTrendDetected = (longtrendimpt and (dynamicRestrict and (abs(trendiness * 100) < (trendSensitivity+(longtermTrend * longTrendImportance))))) or (not longtrendimpt and ((dynamicRestrict and (abs(trendiness * 100) < trendSensitivity))))

// adapt conservativeness to volatility

//consVal = sma(((stdev(price,conservativenessLookback))/price)*100,25)
consVal = sma(((stdev(price,conservativenessLookback))/price)*100,25)
cVnorm = sma(avg(consVal,3),60)
cVal = consVal - cVnorm

//conservativenessMod = conservativeness * (cVal * consAffectFactor)
conservativenessMod = conservativeness * (consVal * consAffectFactor)
//plot(consVal,linewidth=4)
//plot(cVnorm,color = #00FF00)
//plot(cVal,linewidth=2)

// ROC cutoff (for CLOSING)
//rocCloseLong = (ema(roc(price,ROClength),10) > ROCcutoff)
//rocCloseShort = (ema(roc(price,ROClength),10) < (ROCcutoff * -1))
ROCval = roc(price,ROClength)
ROCema = ema(ROCval,30)
ROCabs = abs(ROCema)
ROCallow = ROCabs < ROCcutoff
ROCallowLong = (ROCabs < ROCcutoff)  or ((ROCabs >= ROCcutoff) and ((fastChannelLB < slowChannelLB) and (fastHMA < fastChannelLB)))
ROCallowShort = (ROCabs < ROCcutoff) or ((ROCabs >= ROCcutoff) and ((fastChannelUB > slowChannelUB) and (fastHMA > fastChannelUB)))
//plot(ROCallow)

// obv
evidence_obv = (correlation(price,obv[0],obvLookback))
obvAllow = evidence_obv > obvCorrThreshold


//if (not na(vrsi))
if trendRestrict or dynamicTrendDetected
    //if (strategy.position_size == 0)
    if not (strategy.position_size < 0)
        if trendUp
        	//if cbear and schL and fchL and trendUp and goLong
        	if cbear and TpeakLow and volumeDecrease and ROCallow and goLong and obvAllow
        	//if cbear and peakLow and rocHigh and volumeDecrease and goLong
        		strategy.entry("Long", strategy.long, comment="Long")
    if not (strategy.position_size > 0)
        if trendDown
        	//if cbull and schU and fchU and trendDown and goShort
        	if cbull and TpeakHigh and volumeDecrease and ROCallow and goShort and obvAllow
        	//if cbull and peakHigh and rocLow and volumeDecrease and goShort
        		strategy.entry("Short", strategy.short, comment="Short")
else
    //if (strategy.position_size == 0)
    if not (strategy.position_size < 0)
        //if cbear and peakLow and goLong
    	//if cbear and peakLow and volumeDecrease and ROCallow and goLong
    	if TpeakLow and goLong and obvAllow
    		strategy.entry("Long", strategy.long, comment="Long")
    if not (strategy.position_size > 0)
        //if cbull and peakHigh and goShort
    	//if cbull and peakHigh and volumeDecrease and ROCallow and goShort
    	if TpeakHigh and goShort and obvAllow
    		strategy.entry("Short", strategy.short, comment="Short")

if conservativeClose
    //pkHigh = ((fastHMA > fastChannelUB) and (fastChannelUB > (slowChannelUB * (1 + conservativeness/1000))))
    //pkLow = ((fastHMA < fastChannelLB) and (fastChannelLB < (slowChannelLB * (1 - conservativeness/1000))))
    //pkHigh = ((fastHMA > fastChannelUB) and (fastChannelUB > (slowChannelUB * (1 + conservativenessMod/1000))))
    //pkLow = ((fastHMA < fastChannelLB) and (fastChannelLB < (slowChannelLB * (1 - conservativenessMod/1000))))
    pkHigh = ((fastHMA > fastChannelUB) and (fastChannelUB > (slowChannelUB * (1 + ((conservativenessMod/1000) * (1 - Restrictiveness/100))))))
    pkLow = ((fastHMA < fastChannelLB) and (fastChannelLB < (slowChannelLB * (1 - ((conservativenessMod/1000) * (1 - Restrictiveness/100))))))
    
    if (strategy.position_size > 0)
        //if fastAboveUB
        //if pkHigh and closeLong
        if closeLong
    		strategy.close("Long", comment="closeLong")
    if (strategy.position_size < 0)
        //if fastBelowLB
        //if pkLow and closeShort
        if closeShort
    		strategy.close("Short", comment="closeShort")
else
    if (strategy.position_size > 0)
        //if fastAboveUB
        if peakHigh
    		strategy.close("Long", comment="closeLong")
    if (strategy.position_size < 0)
        //if fastBelowLB
        if peakLow
    		strategy.close("Short", comment="closeShort")

if (strategy.position_size > 0)
    strategy.exit(id="Long", stop=longStopPrice, comment="stopLong")

if (strategy.position_size < 0)
    strategy.exit(id="Short", stop=shortStopPrice, comment="stopShort")
//plot(strategy.equity, title="equity", color=color.red, linewidth=2, style=plot.style_areabr)