Neuronale Netzwerk-SuperTrend-Strategie


Erstellungsdatum: 2023-09-14 16:49:38 zuletzt geändert: 2023-09-14 16:49:38
Kopie: 0 Klicks: 846
1
konzentrieren Sie sich auf
1617
Anhänger

Strategieprinzip

Die Strategie kombiniert Neural-Network-Modelle, RSI-Indikatoren und Supertrend-Indikatoren für den Handel.

Die Logik lautet:

  1. Erstellen Sie ein Modell für ein neuronales Netzwerk, das mehrdimensionale Daten wie Transaktionsrate, Brin-Band, RSI und mehr enthält

  2. Das Internet prognostiziert zukünftige Preisänderungen

  3. Berechnen Sie den RSI-Wert und kombinieren Sie den RSI mit der prognostizierten Preisänderungsrate

  4. Erstellung einer dynamischen Stop-Loss-Linie basierend auf dem RSI-Wert

  5. Wenn der Preis die Aufwärts-Stop-Line überschreitet, ist er leer; wenn der Preis die Abwärts-Stop-Line überschreitet, ist er mehr.

  6. Filterung der Trendbeurteilung in Verbindung mit dem Supertrend-Indikator

Die Strategie nutzt die Simulationsfähigkeit von Neural Networks für komplexe Daten und unterstützt die Signalprüfung mit Indikatoren wie RSI und Supertrends, um das Handelsrisiko zu kontrollieren, während die Richtigkeit der Beurteilung verbessert wird.

Strategische Vorteile

  • Neuronale Netze zur Modellierung von mehrdimensionalen Daten

  • RSI-Stoppschäden schützen Gewinne, Supertrend unterstützt Urteile

  • Mehrfache Kombinationsprüfungen zur Verbesserung der Signalqualität

Strategisches Risiko

  • Das ist eine sehr wichtige Aufgabe.

  • RSI und Supertrend-Parameter müssen optimiert werden

  • Wirkung ist modellbasiert, es gibt Unsicherheiten

Zusammenfassen

Die Strategie basiert auf einer traditionellen Indikator-Bewertung, unterstützt durch maschinelle Lerntechnologien, um Risiken zu kontrollieren und gleichzeitig Effizienz zu erreichen. Die Parameteranpassung und die Modellinterpretationsfähigkeit müssen jedoch noch verbessert werden.

Strategiequellcode
/*backtest
start: 2023-08-14 00:00:00
end: 2023-09-13 00:00:00
period: 2h
basePeriod: 15m
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
*/

//@version=4
//ANN taken from https://www.tradingview.com/script/Eq4zZsTI-ANN-MACD-BTC/
//it only work for BTC as the ANN is trained for this data only
//super trend https://www.tradingview.com/script/VLWVV7tH-SuperTrend/
// Strategy version created for @che_trader
strategy ("ANN RSI SUPER TREND STRATEGY BY che_trader", overlay = true)
qty = input(10000, "Buy quantity")

testStartYear = input(2019, "Backtest Start Year")
testStartMonth = input(1, "Backtest Start Month")
testStartDay = input(1, "Backtest Start Day")
testStartHour = input(0, "Backtest Start Hour")
testStartMin = input(0, "Backtest Start Minute")
testPeriodStart = timestamp(testStartYear,testStartMonth,testStartDay,testStartHour,testStartMin)
testStopYear = input(2099, "Backtest Stop Year")
testStopMonth = input(1, "Backtest Stop Month")
testStopDay = input(30, "Backtest Stop Day")
testPeriodStop = timestamp(testStopYear,testStopMonth,testStopDay,0,0)
testPeriod() => true

max_bars_back = (21)
src = close[0]

// Essential Functions

// Highest - Lowest Functions ( All efforts goes to RicardoSantos )

f_highest(_src, _length)=>
    _adjusted_length = _length < 1 ? 1 : _length
    _value = _src
    for _i = 0 to (_adjusted_length-1)
        _value := _src[_i] >= _value ? _src[_i] : _value
    _return = _value

f_lowest(_src, _length)=>
    _adjusted_length = _length < 1 ? 1 : _length
    _value = _src
    for _i = 0 to (_adjusted_length-1)
        _value := _src[_i] <= _value ? _src[_i] : _value
    _return = _value

// Function Sum  

f_sum(_src , _length) => 

    _output  = 0.00 
    
    _length_adjusted = _length < 1 ? 1 : _length
    
    for i = 0 to _length_adjusted-1
        _output := _output + _src[i]


// Unlocked Exponential Moving Average Function

f_ema(_src, _length)=>
    _length_adjusted = _length < 1 ? 1 : _length
    _multiplier = 2 / (_length_adjusted + 1)
    _return  = 0.00
    _return := na(_return[1]) ? _src : ((_src - _return[1]) * _multiplier) + _return[1]


// Unlocked Moving Average Function 

f_sma(_src, _length)=>
    
    _output = 0.00
    _length_adjusted = _length < 0 ? 0 : _length
    w = cum(_src)

    _output:= (w - w[_length_adjusted]) / _length_adjusted
   
    _output    


// Definition : Function Bollinger Bands

Multiplier = 2 
_length_bb = 20


e_r = f_sma(src,_length_bb)


// Function Standard Deviation : 

f_stdev(_src,_length) =>

    float _output = na 
    _length_adjusted = _length < 2 ? 2 : _length
    _avg  = f_ema(_src , _length_adjusted)
    evar  = (_src - _avg) * (_src - _avg)
    evar2 = ((f_sum(evar,_length_adjusted))/_length_adjusted)
    
    _output := sqrt(evar2)


std_r = f_stdev(src , _length_bb )


upband = e_r + (Multiplier * std_r)  // Upband
dnband = e_r - (Multiplier * std_r)  // Lowband
basis  = e_r                         // Midband

// Function : RSI


length = input(14, minval=1) // 


f_rma(_src, _length) =>
    _length_adjusted = _length < 1 ? 1 : _length
    alpha = _length_adjusted
    sum = 0.0
    sum := (_src + (alpha - 1) * nz(sum[1])) / alpha



f_rsi(_src, _length) => 

    _output = 0.00 
    _length_adjusted = _length < 0 ? 0 : _length

    u = _length_adjusted < 1 ? max(_src - _src[_length_adjusted], 0) : max(_src - _src[1] , 0) // upward change
    d = _length_adjusted < 1 ? max(_src[_length_adjusted] - _src, 0) : max(_src[1] - _src , 0) // downward change
    rs = f_rma(u, _length) / f_rma(d, _length)
    res = 100 - 100 / (1 + rs)
    res


_rsi = f_rsi(src, length)


// MACD 

_fastLength   = input(12 , title = "MACD Fast Length")
_slowlength   = input(26 , title = "MACD Slow Length")
_signalLength = input(9  , title = "MACD Signal Length")


_macd   = f_ema(close, _fastLength) - f_ema(close, _slowlength)
_signal = f_ema(_macd, _signalLength)
	   
_macdhist = _macd - _signal


// Inputs on Tangent Function : 

tangentdiff(_src) => nz((_src - _src[1]) / _src[1] ) 


// Deep Learning Activation Function (Tanh) : 

ActivationFunctionTanh(v) => (1 - exp(-2 * v))/( 1 + exp(-2 * v))


// DEEP LEARNING 

// INPUTS : 

input_1 = tangentdiff(volume)
input_2 = tangentdiff(dnband)
input_3 = tangentdiff(e_r)
input_4 = tangentdiff(upband)
input_5 = tangentdiff(_rsi)
input_6 = tangentdiff(_macdhist)

// LAYERS : 

// Input Layers 

n_0 = ActivationFunctionTanh(input_1 + 0)   
n_1 = ActivationFunctionTanh(input_2 + 0) 
n_2 = ActivationFunctionTanh(input_3 + 0) 
n_3 = ActivationFunctionTanh(input_4 + 0) 
n_4 = ActivationFunctionTanh(input_5 + 0)
n_5 = ActivationFunctionTanh(input_6 + 0)


// Hidden Layers 

n_6   = ActivationFunctionTanh( -2.580743 * n_0 + -1.883627 * n_1 + -3.512462 * n_2 + -0.891063 * n_3 + -0.767728 * n_4 + -0.542699 * n_5 +  0.221093) 
n_7   = ActivationFunctionTanh( -0.131977 * n_0 + -1.543499 * n_1 +  0.019450 * n_2 +  0.041301 * n_3 + -0.926690 * n_4 + -0.797512 * n_5 + -1.804061) 
n_8   = ActivationFunctionTanh( -0.587905 * n_0 + -7.528007 * n_1 + -5.273207 * n_2 +  1.633836 * n_3 +  6.099666 * n_4 +  3.509443 * n_5 + -4.384254) 
n_9   = ActivationFunctionTanh( -1.026331 * n_0 + -1.289491 * n_1 + -1.702887 * n_2 + -1.052681 * n_3 + -1.031452 * n_4 + -0.597999 * n_5 + -1.178839) 
n_10  = ActivationFunctionTanh( -5.393730 * n_0 + -2.486204 * n_1 +  3.655614 * n_2 +  1.051512 * n_3 + -2.763198 * n_4 +  6.062295 * n_5 + -6.367982) 
n_11  = ActivationFunctionTanh(  1.246882 * n_0 + -1.993206 * n_1 +  1.599518 * n_2 +  1.871801 * n_3 +  0.294797 * n_4 + -0.607512 * n_5 + -3.092821) 
n_12  = ActivationFunctionTanh( -2.325161 * n_0 + -1.433500 * n_1 + -2.928094 * n_2 + -0.715416 * n_3 + -0.914663 * n_4 + -0.485397 * n_5 + -0.411227) 
n_13  = ActivationFunctionTanh( -0.350585 * n_0 + -0.810108 * n_1 + -1.756149 * n_2 + -0.567176 * n_3 + -0.954021 * n_4 + -1.027830 * n_5 + -1.349766) 


// Output Layer 

_output  = ActivationFunctionTanh(2.588784 * n_6  + 0.100819 * n_7  + -5.305373 * n_8  + 1.167093 * n_9  + 
                                  3.770143 * n_10 + 1.269190 * n_11 +  2.090862 * n_12 + 0.839791 * n_13 + -0.196165)

_chg_src = tangentdiff(src) * 100

_seed = (_output - _chg_src)
// BEGIN ACTUAL STRATEGY
length1 = input(title="RSI Period", type=input.integer, defval=21)
mult = input(title="RSI Multiplier", type=input.float, step=0.1, defval=4.0)
wicks = input(title="Take Wicks into Account ?", type=input.bool, defval=false)
showLabels = input(title="Show Buy/Sell Labels ?", type=input.bool, defval=true)

srsi = mult* rsi(_seed ,length1)

longStop = hl2 - srsi
longStopPrev = nz(longStop[1], longStop)
longStop := (wicks ? low[1] : close[1]) > longStopPrev ? max(longStop, longStopPrev) : longStop

shortStop = hl2 + srsi
shortStopPrev = nz(shortStop[1], shortStop)
shortStop := (wicks ? high[1] : close[1]) < shortStopPrev ? min(shortStop, shortStopPrev) : shortStop

dir = 1
dir := nz(dir[1], dir)
dir := dir == -1 and (wicks ? high : close) > shortStopPrev ? 1 : dir == 1 and (wicks ? low : close) < longStopPrev ? -1 : dir

longColor = color.green
shortColor = color.red

plot(dir == 1 ? longStop : na, title="Long Stop", style=plot.style_linebr, linewidth=2, color=longColor)
buySignal = dir == 1 and dir[1] == -1
plotshape(buySignal ? longStop : na, title="Long Stop Start", location=location.absolute, style=shape.circle, size=size.tiny, color=longColor, transp=0)
plotshape(buySignal and showLabels ? longStop : na, title="Buy Label", text="Buy", location=location.absolute, style=shape.labelup, size=size.tiny, color=longColor, textcolor=color.white, transp=0)

plot(dir == 1 ? na : shortStop, title="Short Stop", style=plot.style_linebr, linewidth=2, color=shortColor)
sellSignal = dir == -1 and dir[1] == 1
plotshape(sellSignal ? shortStop : na, title="Short Stop Start", location=location.absolute, style=shape.circle, size=size.tiny, color=shortColor, transp=0)
plotshape(sellSignal and showLabels ? shortStop : na, title="Sell Label", text="Sell", location=location.absolute, style=shape.labeldown, size=size.tiny, color=shortColor, textcolor=color.white, transp=0)





if testPeriod() and buySignal
    strategy.entry("Long",strategy.long)

if testPeriod() and sellSignal
    strategy.entry("Short",strategy.short)