La estrategia combina un modelo de red neuronal, el indicador RSI y el indicador de tendencias súper para operar.
La lógica es la siguiente:
Construir un modelo de red neuronal con datos multidimensionales como el cambio de la tasa de transacción, la banda de Brin y el RSI
Las predicciones de la red obtienen la tasa de cambio de precios en el futuro
Calcular el valor del indicador RSI y combinar el RSI con la tasa de cambio de precios prevista
Generar una línea de stop loss dinámica según el valor del indicador RSI
Cuando el precio cae por debajo de la línea de alto de la pérdida, se queda en blanco; cuando el precio se rompe por debajo de la línea de alto de la pérdida, se hace más
Filtrado de las tendencias en combinación con indicadores de tendencias super
La estrategia aprovecha la capacidad de las redes neuronales para simular datos complejos y se complementa con la verificación de señales con indicadores como el RSI y las supertendencias para controlar el riesgo de las transacciones al tiempo que mejora la precisión de los juicios.
Tendencias de las redes neuronales en la modelación de datos multidimensionales
RSI para proteger las ganancias de la pérdida de pérdidas, el juicio auxiliar de la tendencia súper
Verificación combinada de múltiples indicadores para mejorar la calidad de la señal
Se requieren grandes cantidades de datos para entrenar las redes neuronales
El RSI y los parámetros de la tendencia súper necesitan ajustes optimizados
El efecto depende del modelo y hay incertidumbre
La estrategia utiliza la tecnología de aprendizaje automático para evaluar los indicadores tradicionales y controlar el riesgo a la vez que se busca una alta eficiencia. Sin embargo, la adaptabilidad de los parámetros y la interpretabilidad de los modelos aún deben perfeccionarse.
/*backtest
start: 2023-08-14 00:00:00
end: 2023-09-13 00:00:00
period: 2h
basePeriod: 15m
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
*/
//@version=4
//ANN taken from https://www.tradingview.com/script/Eq4zZsTI-ANN-MACD-BTC/
//it only work for BTC as the ANN is trained for this data only
//super trend https://www.tradingview.com/script/VLWVV7tH-SuperTrend/
// Strategy version created for @che_trader
strategy ("ANN RSI SUPER TREND STRATEGY BY che_trader", overlay = true)
qty = input(10000, "Buy quantity")
testStartYear = input(2019, "Backtest Start Year")
testStartMonth = input(1, "Backtest Start Month")
testStartDay = input(1, "Backtest Start Day")
testStartHour = input(0, "Backtest Start Hour")
testStartMin = input(0, "Backtest Start Minute")
testPeriodStart = timestamp(testStartYear,testStartMonth,testStartDay,testStartHour,testStartMin)
testStopYear = input(2099, "Backtest Stop Year")
testStopMonth = input(1, "Backtest Stop Month")
testStopDay = input(30, "Backtest Stop Day")
testPeriodStop = timestamp(testStopYear,testStopMonth,testStopDay,0,0)
testPeriod() => true
max_bars_back = (21)
src = close[0]
// Essential Functions
// Highest - Lowest Functions ( All efforts goes to RicardoSantos )
f_highest(_src, _length)=>
_adjusted_length = _length < 1 ? 1 : _length
_value = _src
for _i = 0 to (_adjusted_length-1)
_value := _src[_i] >= _value ? _src[_i] : _value
_return = _value
f_lowest(_src, _length)=>
_adjusted_length = _length < 1 ? 1 : _length
_value = _src
for _i = 0 to (_adjusted_length-1)
_value := _src[_i] <= _value ? _src[_i] : _value
_return = _value
// Function Sum
f_sum(_src , _length) =>
_output = 0.00
_length_adjusted = _length < 1 ? 1 : _length
for i = 0 to _length_adjusted-1
_output := _output + _src[i]
// Unlocked Exponential Moving Average Function
f_ema(_src, _length)=>
_length_adjusted = _length < 1 ? 1 : _length
_multiplier = 2 / (_length_adjusted + 1)
_return = 0.00
_return := na(_return[1]) ? _src : ((_src - _return[1]) * _multiplier) + _return[1]
// Unlocked Moving Average Function
f_sma(_src, _length)=>
_output = 0.00
_length_adjusted = _length < 0 ? 0 : _length
w = cum(_src)
_output:= (w - w[_length_adjusted]) / _length_adjusted
_output
// Definition : Function Bollinger Bands
Multiplier = 2
_length_bb = 20
e_r = f_sma(src,_length_bb)
// Function Standard Deviation :
f_stdev(_src,_length) =>
float _output = na
_length_adjusted = _length < 2 ? 2 : _length
_avg = f_ema(_src , _length_adjusted)
evar = (_src - _avg) * (_src - _avg)
evar2 = ((f_sum(evar,_length_adjusted))/_length_adjusted)
_output := sqrt(evar2)
std_r = f_stdev(src , _length_bb )
upband = e_r + (Multiplier * std_r) // Upband
dnband = e_r - (Multiplier * std_r) // Lowband
basis = e_r // Midband
// Function : RSI
length = input(14, minval=1) //
f_rma(_src, _length) =>
_length_adjusted = _length < 1 ? 1 : _length
alpha = _length_adjusted
sum = 0.0
sum := (_src + (alpha - 1) * nz(sum[1])) / alpha
f_rsi(_src, _length) =>
_output = 0.00
_length_adjusted = _length < 0 ? 0 : _length
u = _length_adjusted < 1 ? max(_src - _src[_length_adjusted], 0) : max(_src - _src[1] , 0) // upward change
d = _length_adjusted < 1 ? max(_src[_length_adjusted] - _src, 0) : max(_src[1] - _src , 0) // downward change
rs = f_rma(u, _length) / f_rma(d, _length)
res = 100 - 100 / (1 + rs)
res
_rsi = f_rsi(src, length)
// MACD
_fastLength = input(12 , title = "MACD Fast Length")
_slowlength = input(26 , title = "MACD Slow Length")
_signalLength = input(9 , title = "MACD Signal Length")
_macd = f_ema(close, _fastLength) - f_ema(close, _slowlength)
_signal = f_ema(_macd, _signalLength)
_macdhist = _macd - _signal
// Inputs on Tangent Function :
tangentdiff(_src) => nz((_src - _src[1]) / _src[1] )
// Deep Learning Activation Function (Tanh) :
ActivationFunctionTanh(v) => (1 - exp(-2 * v))/( 1 + exp(-2 * v))
// DEEP LEARNING
// INPUTS :
input_1 = tangentdiff(volume)
input_2 = tangentdiff(dnband)
input_3 = tangentdiff(e_r)
input_4 = tangentdiff(upband)
input_5 = tangentdiff(_rsi)
input_6 = tangentdiff(_macdhist)
// LAYERS :
// Input Layers
n_0 = ActivationFunctionTanh(input_1 + 0)
n_1 = ActivationFunctionTanh(input_2 + 0)
n_2 = ActivationFunctionTanh(input_3 + 0)
n_3 = ActivationFunctionTanh(input_4 + 0)
n_4 = ActivationFunctionTanh(input_5 + 0)
n_5 = ActivationFunctionTanh(input_6 + 0)
// Hidden Layers
n_6 = ActivationFunctionTanh( -2.580743 * n_0 + -1.883627 * n_1 + -3.512462 * n_2 + -0.891063 * n_3 + -0.767728 * n_4 + -0.542699 * n_5 + 0.221093)
n_7 = ActivationFunctionTanh( -0.131977 * n_0 + -1.543499 * n_1 + 0.019450 * n_2 + 0.041301 * n_3 + -0.926690 * n_4 + -0.797512 * n_5 + -1.804061)
n_8 = ActivationFunctionTanh( -0.587905 * n_0 + -7.528007 * n_1 + -5.273207 * n_2 + 1.633836 * n_3 + 6.099666 * n_4 + 3.509443 * n_5 + -4.384254)
n_9 = ActivationFunctionTanh( -1.026331 * n_0 + -1.289491 * n_1 + -1.702887 * n_2 + -1.052681 * n_3 + -1.031452 * n_4 + -0.597999 * n_5 + -1.178839)
n_10 = ActivationFunctionTanh( -5.393730 * n_0 + -2.486204 * n_1 + 3.655614 * n_2 + 1.051512 * n_3 + -2.763198 * n_4 + 6.062295 * n_5 + -6.367982)
n_11 = ActivationFunctionTanh( 1.246882 * n_0 + -1.993206 * n_1 + 1.599518 * n_2 + 1.871801 * n_3 + 0.294797 * n_4 + -0.607512 * n_5 + -3.092821)
n_12 = ActivationFunctionTanh( -2.325161 * n_0 + -1.433500 * n_1 + -2.928094 * n_2 + -0.715416 * n_3 + -0.914663 * n_4 + -0.485397 * n_5 + -0.411227)
n_13 = ActivationFunctionTanh( -0.350585 * n_0 + -0.810108 * n_1 + -1.756149 * n_2 + -0.567176 * n_3 + -0.954021 * n_4 + -1.027830 * n_5 + -1.349766)
// Output Layer
_output = ActivationFunctionTanh(2.588784 * n_6 + 0.100819 * n_7 + -5.305373 * n_8 + 1.167093 * n_9 +
3.770143 * n_10 + 1.269190 * n_11 + 2.090862 * n_12 + 0.839791 * n_13 + -0.196165)
_chg_src = tangentdiff(src) * 100
_seed = (_output - _chg_src)
// BEGIN ACTUAL STRATEGY
length1 = input(title="RSI Period", type=input.integer, defval=21)
mult = input(title="RSI Multiplier", type=input.float, step=0.1, defval=4.0)
wicks = input(title="Take Wicks into Account ?", type=input.bool, defval=false)
showLabels = input(title="Show Buy/Sell Labels ?", type=input.bool, defval=true)
srsi = mult* rsi(_seed ,length1)
longStop = hl2 - srsi
longStopPrev = nz(longStop[1], longStop)
longStop := (wicks ? low[1] : close[1]) > longStopPrev ? max(longStop, longStopPrev) : longStop
shortStop = hl2 + srsi
shortStopPrev = nz(shortStop[1], shortStop)
shortStop := (wicks ? high[1] : close[1]) < shortStopPrev ? min(shortStop, shortStopPrev) : shortStop
dir = 1
dir := nz(dir[1], dir)
dir := dir == -1 and (wicks ? high : close) > shortStopPrev ? 1 : dir == 1 and (wicks ? low : close) < longStopPrev ? -1 : dir
longColor = color.green
shortColor = color.red
plot(dir == 1 ? longStop : na, title="Long Stop", style=plot.style_linebr, linewidth=2, color=longColor)
buySignal = dir == 1 and dir[1] == -1
plotshape(buySignal ? longStop : na, title="Long Stop Start", location=location.absolute, style=shape.circle, size=size.tiny, color=longColor, transp=0)
plotshape(buySignal and showLabels ? longStop : na, title="Buy Label", text="Buy", location=location.absolute, style=shape.labelup, size=size.tiny, color=longColor, textcolor=color.white, transp=0)
plot(dir == 1 ? na : shortStop, title="Short Stop", style=plot.style_linebr, linewidth=2, color=shortColor)
sellSignal = dir == -1 and dir[1] == 1
plotshape(sellSignal ? shortStop : na, title="Short Stop Start", location=location.absolute, style=shape.circle, size=size.tiny, color=shortColor, transp=0)
plotshape(sellSignal and showLabels ? shortStop : na, title="Sell Label", text="Sell", location=location.absolute, style=shape.labeldown, size=size.tiny, color=shortColor, textcolor=color.white, transp=0)
if testPeriod() and buySignal
strategy.entry("Long",strategy.long)
if testPeriod() and sellSignal
strategy.entry("Short",strategy.short)