Strategi ini menggabungkan model rangkaian saraf, penunjuk RSI dan penunjuk super trend untuk berdagang.
Logiknya ialah:
Membina model rangkaian saraf, input termasuk data pelbagai dimensi seperti kadar perubahan jumlah transaksi, pita Brin, RSI
Rangkaian ramalan untuk perubahan harga masa depan
Mengira nilai RSI dan menggabungkan RSI dengan kadar perubahan harga yang diramalkan
Penjanaan garis hentian dinamik berdasarkan nilai RSI
Apabila harga jatuh di bawah garis hentian naik, anda akan melakukan pengurangan; apabila harga jatuh di atas garis hentian turun, anda akan melakukan kenaikan.
Menapis penilaian trend yang digabungkan dengan indikator super trend
Strategi ini memanfaatkan sepenuhnya keupayaan rangkaian saraf untuk mensimulasikan data yang rumit, dan dilengkapi dengan pengesahan isyarat dengan indikator seperti RSI dan super trend, untuk mengawal risiko perdagangan sambil meningkatkan ketepatan penghakiman.
Rangkaian saraf menilai trend pemodelan data pelbagai dimensi
RSI menghentikan kerugian untuk melindungi keuntungan, penilaian tambahan super trend
Pengesahan gabungan pelbagai indikator untuk meningkatkan kualiti isyarat
Perlu banyak data untuk melatih rangkaian saraf
RSI dan parameter super trend perlu disesuaikan dengan baik
Kesan bergantung pada model, terdapat ketidakpastian
Strategi ini menggunakan teknologi pembelajaran mesin yang disokong dengan penilaian indikator tradisional, mengawal risiko sambil mencari kecekapan yang tinggi. Namun, penyesuaian parameter dan model interpretasi masih perlu diperbaiki.
/*backtest
start: 2023-08-14 00:00:00
end: 2023-09-13 00:00:00
period: 2h
basePeriod: 15m
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
*/
//@version=4
//ANN taken from https://www.tradingview.com/script/Eq4zZsTI-ANN-MACD-BTC/
//it only work for BTC as the ANN is trained for this data only
//super trend https://www.tradingview.com/script/VLWVV7tH-SuperTrend/
// Strategy version created for @che_trader
strategy ("ANN RSI SUPER TREND STRATEGY BY che_trader", overlay = true)
qty = input(10000, "Buy quantity")
testStartYear = input(2019, "Backtest Start Year")
testStartMonth = input(1, "Backtest Start Month")
testStartDay = input(1, "Backtest Start Day")
testStartHour = input(0, "Backtest Start Hour")
testStartMin = input(0, "Backtest Start Minute")
testPeriodStart = timestamp(testStartYear,testStartMonth,testStartDay,testStartHour,testStartMin)
testStopYear = input(2099, "Backtest Stop Year")
testStopMonth = input(1, "Backtest Stop Month")
testStopDay = input(30, "Backtest Stop Day")
testPeriodStop = timestamp(testStopYear,testStopMonth,testStopDay,0,0)
testPeriod() => true
max_bars_back = (21)
src = close[0]
// Essential Functions
// Highest - Lowest Functions ( All efforts goes to RicardoSantos )
f_highest(_src, _length)=>
_adjusted_length = _length < 1 ? 1 : _length
_value = _src
for _i = 0 to (_adjusted_length-1)
_value := _src[_i] >= _value ? _src[_i] : _value
_return = _value
f_lowest(_src, _length)=>
_adjusted_length = _length < 1 ? 1 : _length
_value = _src
for _i = 0 to (_adjusted_length-1)
_value := _src[_i] <= _value ? _src[_i] : _value
_return = _value
// Function Sum
f_sum(_src , _length) =>
_output = 0.00
_length_adjusted = _length < 1 ? 1 : _length
for i = 0 to _length_adjusted-1
_output := _output + _src[i]
// Unlocked Exponential Moving Average Function
f_ema(_src, _length)=>
_length_adjusted = _length < 1 ? 1 : _length
_multiplier = 2 / (_length_adjusted + 1)
_return = 0.00
_return := na(_return[1]) ? _src : ((_src - _return[1]) * _multiplier) + _return[1]
// Unlocked Moving Average Function
f_sma(_src, _length)=>
_output = 0.00
_length_adjusted = _length < 0 ? 0 : _length
w = cum(_src)
_output:= (w - w[_length_adjusted]) / _length_adjusted
_output
// Definition : Function Bollinger Bands
Multiplier = 2
_length_bb = 20
e_r = f_sma(src,_length_bb)
// Function Standard Deviation :
f_stdev(_src,_length) =>
float _output = na
_length_adjusted = _length < 2 ? 2 : _length
_avg = f_ema(_src , _length_adjusted)
evar = (_src - _avg) * (_src - _avg)
evar2 = ((f_sum(evar,_length_adjusted))/_length_adjusted)
_output := sqrt(evar2)
std_r = f_stdev(src , _length_bb )
upband = e_r + (Multiplier * std_r) // Upband
dnband = e_r - (Multiplier * std_r) // Lowband
basis = e_r // Midband
// Function : RSI
length = input(14, minval=1) //
f_rma(_src, _length) =>
_length_adjusted = _length < 1 ? 1 : _length
alpha = _length_adjusted
sum = 0.0
sum := (_src + (alpha - 1) * nz(sum[1])) / alpha
f_rsi(_src, _length) =>
_output = 0.00
_length_adjusted = _length < 0 ? 0 : _length
u = _length_adjusted < 1 ? max(_src - _src[_length_adjusted], 0) : max(_src - _src[1] , 0) // upward change
d = _length_adjusted < 1 ? max(_src[_length_adjusted] - _src, 0) : max(_src[1] - _src , 0) // downward change
rs = f_rma(u, _length) / f_rma(d, _length)
res = 100 - 100 / (1 + rs)
res
_rsi = f_rsi(src, length)
// MACD
_fastLength = input(12 , title = "MACD Fast Length")
_slowlength = input(26 , title = "MACD Slow Length")
_signalLength = input(9 , title = "MACD Signal Length")
_macd = f_ema(close, _fastLength) - f_ema(close, _slowlength)
_signal = f_ema(_macd, _signalLength)
_macdhist = _macd - _signal
// Inputs on Tangent Function :
tangentdiff(_src) => nz((_src - _src[1]) / _src[1] )
// Deep Learning Activation Function (Tanh) :
ActivationFunctionTanh(v) => (1 - exp(-2 * v))/( 1 + exp(-2 * v))
// DEEP LEARNING
// INPUTS :
input_1 = tangentdiff(volume)
input_2 = tangentdiff(dnband)
input_3 = tangentdiff(e_r)
input_4 = tangentdiff(upband)
input_5 = tangentdiff(_rsi)
input_6 = tangentdiff(_macdhist)
// LAYERS :
// Input Layers
n_0 = ActivationFunctionTanh(input_1 + 0)
n_1 = ActivationFunctionTanh(input_2 + 0)
n_2 = ActivationFunctionTanh(input_3 + 0)
n_3 = ActivationFunctionTanh(input_4 + 0)
n_4 = ActivationFunctionTanh(input_5 + 0)
n_5 = ActivationFunctionTanh(input_6 + 0)
// Hidden Layers
n_6 = ActivationFunctionTanh( -2.580743 * n_0 + -1.883627 * n_1 + -3.512462 * n_2 + -0.891063 * n_3 + -0.767728 * n_4 + -0.542699 * n_5 + 0.221093)
n_7 = ActivationFunctionTanh( -0.131977 * n_0 + -1.543499 * n_1 + 0.019450 * n_2 + 0.041301 * n_3 + -0.926690 * n_4 + -0.797512 * n_5 + -1.804061)
n_8 = ActivationFunctionTanh( -0.587905 * n_0 + -7.528007 * n_1 + -5.273207 * n_2 + 1.633836 * n_3 + 6.099666 * n_4 + 3.509443 * n_5 + -4.384254)
n_9 = ActivationFunctionTanh( -1.026331 * n_0 + -1.289491 * n_1 + -1.702887 * n_2 + -1.052681 * n_3 + -1.031452 * n_4 + -0.597999 * n_5 + -1.178839)
n_10 = ActivationFunctionTanh( -5.393730 * n_0 + -2.486204 * n_1 + 3.655614 * n_2 + 1.051512 * n_3 + -2.763198 * n_4 + 6.062295 * n_5 + -6.367982)
n_11 = ActivationFunctionTanh( 1.246882 * n_0 + -1.993206 * n_1 + 1.599518 * n_2 + 1.871801 * n_3 + 0.294797 * n_4 + -0.607512 * n_5 + -3.092821)
n_12 = ActivationFunctionTanh( -2.325161 * n_0 + -1.433500 * n_1 + -2.928094 * n_2 + -0.715416 * n_3 + -0.914663 * n_4 + -0.485397 * n_5 + -0.411227)
n_13 = ActivationFunctionTanh( -0.350585 * n_0 + -0.810108 * n_1 + -1.756149 * n_2 + -0.567176 * n_3 + -0.954021 * n_4 + -1.027830 * n_5 + -1.349766)
// Output Layer
_output = ActivationFunctionTanh(2.588784 * n_6 + 0.100819 * n_7 + -5.305373 * n_8 + 1.167093 * n_9 +
3.770143 * n_10 + 1.269190 * n_11 + 2.090862 * n_12 + 0.839791 * n_13 + -0.196165)
_chg_src = tangentdiff(src) * 100
_seed = (_output - _chg_src)
// BEGIN ACTUAL STRATEGY
length1 = input(title="RSI Period", type=input.integer, defval=21)
mult = input(title="RSI Multiplier", type=input.float, step=0.1, defval=4.0)
wicks = input(title="Take Wicks into Account ?", type=input.bool, defval=false)
showLabels = input(title="Show Buy/Sell Labels ?", type=input.bool, defval=true)
srsi = mult* rsi(_seed ,length1)
longStop = hl2 - srsi
longStopPrev = nz(longStop[1], longStop)
longStop := (wicks ? low[1] : close[1]) > longStopPrev ? max(longStop, longStopPrev) : longStop
shortStop = hl2 + srsi
shortStopPrev = nz(shortStop[1], shortStop)
shortStop := (wicks ? high[1] : close[1]) < shortStopPrev ? min(shortStop, shortStopPrev) : shortStop
dir = 1
dir := nz(dir[1], dir)
dir := dir == -1 and (wicks ? high : close) > shortStopPrev ? 1 : dir == 1 and (wicks ? low : close) < longStopPrev ? -1 : dir
longColor = color.green
shortColor = color.red
plot(dir == 1 ? longStop : na, title="Long Stop", style=plot.style_linebr, linewidth=2, color=longColor)
buySignal = dir == 1 and dir[1] == -1
plotshape(buySignal ? longStop : na, title="Long Stop Start", location=location.absolute, style=shape.circle, size=size.tiny, color=longColor, transp=0)
plotshape(buySignal and showLabels ? longStop : na, title="Buy Label", text="Buy", location=location.absolute, style=shape.labelup, size=size.tiny, color=longColor, textcolor=color.white, transp=0)
plot(dir == 1 ? na : shortStop, title="Short Stop", style=plot.style_linebr, linewidth=2, color=shortColor)
sellSignal = dir == -1 and dir[1] == 1
plotshape(sellSignal ? shortStop : na, title="Short Stop Start", location=location.absolute, style=shape.circle, size=size.tiny, color=shortColor, transp=0)
plotshape(sellSignal and showLabels ? shortStop : na, title="Sell Label", text="Sell", location=location.absolute, style=shape.labeldown, size=size.tiny, color=shortColor, textcolor=color.white, transp=0)
if testPeriod() and buySignal
strategy.entry("Long",strategy.long)
if testPeriod() and sellSignal
strategy.entry("Short",strategy.short)