Strategi SuperTrend Rangkaian Neural


Tarikh penciptaan: 2023-09-14 16:49:38 Akhirnya diubah suai: 2023-09-14 16:49:38
Salin: 0 Bilangan klik: 846
1
fokus pada
1617
Pengikut

Prinsip Strategi

Strategi ini menggabungkan model rangkaian saraf, penunjuk RSI dan penunjuk super trend untuk berdagang.

Logiknya ialah:

  1. Membina model rangkaian saraf, input termasuk data pelbagai dimensi seperti kadar perubahan jumlah transaksi, pita Brin, RSI

  2. Rangkaian ramalan untuk perubahan harga masa depan

  3. Mengira nilai RSI dan menggabungkan RSI dengan kadar perubahan harga yang diramalkan

  4. Penjanaan garis hentian dinamik berdasarkan nilai RSI

  5. Apabila harga jatuh di bawah garis hentian naik, anda akan melakukan pengurangan; apabila harga jatuh di atas garis hentian turun, anda akan melakukan kenaikan.

  6. Menapis penilaian trend yang digabungkan dengan indikator super trend

Strategi ini memanfaatkan sepenuhnya keupayaan rangkaian saraf untuk mensimulasikan data yang rumit, dan dilengkapi dengan pengesahan isyarat dengan indikator seperti RSI dan super trend, untuk mengawal risiko perdagangan sambil meningkatkan ketepatan penghakiman.

Kelebihan Strategik

  • Rangkaian saraf menilai trend pemodelan data pelbagai dimensi

  • RSI menghentikan kerugian untuk melindungi keuntungan, penilaian tambahan super trend

  • Pengesahan gabungan pelbagai indikator untuk meningkatkan kualiti isyarat

Risiko Strategik

  • Perlu banyak data untuk melatih rangkaian saraf

  • RSI dan parameter super trend perlu disesuaikan dengan baik

  • Kesan bergantung pada model, terdapat ketidakpastian

ringkaskan

Strategi ini menggunakan teknologi pembelajaran mesin yang disokong dengan penilaian indikator tradisional, mengawal risiko sambil mencari kecekapan yang tinggi. Namun, penyesuaian parameter dan model interpretasi masih perlu diperbaiki.

Kod sumber strategi
/*backtest
start: 2023-08-14 00:00:00
end: 2023-09-13 00:00:00
period: 2h
basePeriod: 15m
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
*/

//@version=4
//ANN taken from https://www.tradingview.com/script/Eq4zZsTI-ANN-MACD-BTC/
//it only work for BTC as the ANN is trained for this data only
//super trend https://www.tradingview.com/script/VLWVV7tH-SuperTrend/
// Strategy version created for @che_trader
strategy ("ANN RSI SUPER TREND STRATEGY BY che_trader", overlay = true)
qty = input(10000, "Buy quantity")

testStartYear = input(2019, "Backtest Start Year")
testStartMonth = input(1, "Backtest Start Month")
testStartDay = input(1, "Backtest Start Day")
testStartHour = input(0, "Backtest Start Hour")
testStartMin = input(0, "Backtest Start Minute")
testPeriodStart = timestamp(testStartYear,testStartMonth,testStartDay,testStartHour,testStartMin)
testStopYear = input(2099, "Backtest Stop Year")
testStopMonth = input(1, "Backtest Stop Month")
testStopDay = input(30, "Backtest Stop Day")
testPeriodStop = timestamp(testStopYear,testStopMonth,testStopDay,0,0)
testPeriod() => true

max_bars_back = (21)
src = close[0]

// Essential Functions

// Highest - Lowest Functions ( All efforts goes to RicardoSantos )

f_highest(_src, _length)=>
    _adjusted_length = _length < 1 ? 1 : _length
    _value = _src
    for _i = 0 to (_adjusted_length-1)
        _value := _src[_i] >= _value ? _src[_i] : _value
    _return = _value

f_lowest(_src, _length)=>
    _adjusted_length = _length < 1 ? 1 : _length
    _value = _src
    for _i = 0 to (_adjusted_length-1)
        _value := _src[_i] <= _value ? _src[_i] : _value
    _return = _value

// Function Sum  

f_sum(_src , _length) => 

    _output  = 0.00 
    
    _length_adjusted = _length < 1 ? 1 : _length
    
    for i = 0 to _length_adjusted-1
        _output := _output + _src[i]


// Unlocked Exponential Moving Average Function

f_ema(_src, _length)=>
    _length_adjusted = _length < 1 ? 1 : _length
    _multiplier = 2 / (_length_adjusted + 1)
    _return  = 0.00
    _return := na(_return[1]) ? _src : ((_src - _return[1]) * _multiplier) + _return[1]


// Unlocked Moving Average Function 

f_sma(_src, _length)=>
    
    _output = 0.00
    _length_adjusted = _length < 0 ? 0 : _length
    w = cum(_src)

    _output:= (w - w[_length_adjusted]) / _length_adjusted
   
    _output    


// Definition : Function Bollinger Bands

Multiplier = 2 
_length_bb = 20


e_r = f_sma(src,_length_bb)


// Function Standard Deviation : 

f_stdev(_src,_length) =>

    float _output = na 
    _length_adjusted = _length < 2 ? 2 : _length
    _avg  = f_ema(_src , _length_adjusted)
    evar  = (_src - _avg) * (_src - _avg)
    evar2 = ((f_sum(evar,_length_adjusted))/_length_adjusted)
    
    _output := sqrt(evar2)


std_r = f_stdev(src , _length_bb )


upband = e_r + (Multiplier * std_r)  // Upband
dnband = e_r - (Multiplier * std_r)  // Lowband
basis  = e_r                         // Midband

// Function : RSI


length = input(14, minval=1) // 


f_rma(_src, _length) =>
    _length_adjusted = _length < 1 ? 1 : _length
    alpha = _length_adjusted
    sum = 0.0
    sum := (_src + (alpha - 1) * nz(sum[1])) / alpha



f_rsi(_src, _length) => 

    _output = 0.00 
    _length_adjusted = _length < 0 ? 0 : _length

    u = _length_adjusted < 1 ? max(_src - _src[_length_adjusted], 0) : max(_src - _src[1] , 0) // upward change
    d = _length_adjusted < 1 ? max(_src[_length_adjusted] - _src, 0) : max(_src[1] - _src , 0) // downward change
    rs = f_rma(u, _length) / f_rma(d, _length)
    res = 100 - 100 / (1 + rs)
    res


_rsi = f_rsi(src, length)


// MACD 

_fastLength   = input(12 , title = "MACD Fast Length")
_slowlength   = input(26 , title = "MACD Slow Length")
_signalLength = input(9  , title = "MACD Signal Length")


_macd   = f_ema(close, _fastLength) - f_ema(close, _slowlength)
_signal = f_ema(_macd, _signalLength)
	   
_macdhist = _macd - _signal


// Inputs on Tangent Function : 

tangentdiff(_src) => nz((_src - _src[1]) / _src[1] ) 


// Deep Learning Activation Function (Tanh) : 

ActivationFunctionTanh(v) => (1 - exp(-2 * v))/( 1 + exp(-2 * v))


// DEEP LEARNING 

// INPUTS : 

input_1 = tangentdiff(volume)
input_2 = tangentdiff(dnband)
input_3 = tangentdiff(e_r)
input_4 = tangentdiff(upband)
input_5 = tangentdiff(_rsi)
input_6 = tangentdiff(_macdhist)

// LAYERS : 

// Input Layers 

n_0 = ActivationFunctionTanh(input_1 + 0)   
n_1 = ActivationFunctionTanh(input_2 + 0) 
n_2 = ActivationFunctionTanh(input_3 + 0) 
n_3 = ActivationFunctionTanh(input_4 + 0) 
n_4 = ActivationFunctionTanh(input_5 + 0)
n_5 = ActivationFunctionTanh(input_6 + 0)


// Hidden Layers 

n_6   = ActivationFunctionTanh( -2.580743 * n_0 + -1.883627 * n_1 + -3.512462 * n_2 + -0.891063 * n_3 + -0.767728 * n_4 + -0.542699 * n_5 +  0.221093) 
n_7   = ActivationFunctionTanh( -0.131977 * n_0 + -1.543499 * n_1 +  0.019450 * n_2 +  0.041301 * n_3 + -0.926690 * n_4 + -0.797512 * n_5 + -1.804061) 
n_8   = ActivationFunctionTanh( -0.587905 * n_0 + -7.528007 * n_1 + -5.273207 * n_2 +  1.633836 * n_3 +  6.099666 * n_4 +  3.509443 * n_5 + -4.384254) 
n_9   = ActivationFunctionTanh( -1.026331 * n_0 + -1.289491 * n_1 + -1.702887 * n_2 + -1.052681 * n_3 + -1.031452 * n_4 + -0.597999 * n_5 + -1.178839) 
n_10  = ActivationFunctionTanh( -5.393730 * n_0 + -2.486204 * n_1 +  3.655614 * n_2 +  1.051512 * n_3 + -2.763198 * n_4 +  6.062295 * n_5 + -6.367982) 
n_11  = ActivationFunctionTanh(  1.246882 * n_0 + -1.993206 * n_1 +  1.599518 * n_2 +  1.871801 * n_3 +  0.294797 * n_4 + -0.607512 * n_5 + -3.092821) 
n_12  = ActivationFunctionTanh( -2.325161 * n_0 + -1.433500 * n_1 + -2.928094 * n_2 + -0.715416 * n_3 + -0.914663 * n_4 + -0.485397 * n_5 + -0.411227) 
n_13  = ActivationFunctionTanh( -0.350585 * n_0 + -0.810108 * n_1 + -1.756149 * n_2 + -0.567176 * n_3 + -0.954021 * n_4 + -1.027830 * n_5 + -1.349766) 


// Output Layer 

_output  = ActivationFunctionTanh(2.588784 * n_6  + 0.100819 * n_7  + -5.305373 * n_8  + 1.167093 * n_9  + 
                                  3.770143 * n_10 + 1.269190 * n_11 +  2.090862 * n_12 + 0.839791 * n_13 + -0.196165)

_chg_src = tangentdiff(src) * 100

_seed = (_output - _chg_src)
// BEGIN ACTUAL STRATEGY
length1 = input(title="RSI Period", type=input.integer, defval=21)
mult = input(title="RSI Multiplier", type=input.float, step=0.1, defval=4.0)
wicks = input(title="Take Wicks into Account ?", type=input.bool, defval=false)
showLabels = input(title="Show Buy/Sell Labels ?", type=input.bool, defval=true)

srsi = mult* rsi(_seed ,length1)

longStop = hl2 - srsi
longStopPrev = nz(longStop[1], longStop)
longStop := (wicks ? low[1] : close[1]) > longStopPrev ? max(longStop, longStopPrev) : longStop

shortStop = hl2 + srsi
shortStopPrev = nz(shortStop[1], shortStop)
shortStop := (wicks ? high[1] : close[1]) < shortStopPrev ? min(shortStop, shortStopPrev) : shortStop

dir = 1
dir := nz(dir[1], dir)
dir := dir == -1 and (wicks ? high : close) > shortStopPrev ? 1 : dir == 1 and (wicks ? low : close) < longStopPrev ? -1 : dir

longColor = color.green
shortColor = color.red

plot(dir == 1 ? longStop : na, title="Long Stop", style=plot.style_linebr, linewidth=2, color=longColor)
buySignal = dir == 1 and dir[1] == -1
plotshape(buySignal ? longStop : na, title="Long Stop Start", location=location.absolute, style=shape.circle, size=size.tiny, color=longColor, transp=0)
plotshape(buySignal and showLabels ? longStop : na, title="Buy Label", text="Buy", location=location.absolute, style=shape.labelup, size=size.tiny, color=longColor, textcolor=color.white, transp=0)

plot(dir == 1 ? na : shortStop, title="Short Stop", style=plot.style_linebr, linewidth=2, color=shortColor)
sellSignal = dir == -1 and dir[1] == 1
plotshape(sellSignal ? shortStop : na, title="Short Stop Start", location=location.absolute, style=shape.circle, size=size.tiny, color=shortColor, transp=0)
plotshape(sellSignal and showLabels ? shortStop : na, title="Sell Label", text="Sell", location=location.absolute, style=shape.labeldown, size=size.tiny, color=shortColor, textcolor=color.white, transp=0)





if testPeriod() and buySignal
    strategy.entry("Long",strategy.long)

if testPeriod() and sellSignal
    strategy.entry("Short",strategy.short)