Chiến lược siêu xu hướng mạng nơ-ron


Ngày tạo: 2023-09-14 16:49:38 sửa đổi lần cuối: 2023-09-14 16:49:38
sao chép: 0 Số nhấp chuột: 846
1
tập trung vào
1617
Người theo dõi

Nguyên tắc chiến lược

Chiến lược này kết hợp mô hình mạng thần kinh, chỉ số RSI và chỉ số siêu xu hướng để giao dịch.

Lý luận cụ thể là:

  1. Xây dựng mô hình mạng thần kinh, nhập dữ liệu đa chiều bao gồm tỷ lệ biến đổi khối lượng giao dịch, băng tần Brin, RSI

  2. Dự báo của mạng cho thấy tỷ lệ thay đổi giá trong tương lai

  3. Tính giá trị của chỉ số RSI và kết hợp RSI với tỷ lệ biến đổi giá dự đoán

  4. Tạo đường dừng động dựa trên giá trị chỉ số RSI

  5. Khi giá vượt qua đường dừng lên, bạn sẽ làm cho nó trống rỗng; khi giá vượt qua đường dừng xuống, bạn sẽ làm cho nó thêm.

  6. Trình lọc định hướng kết hợp với chỉ số siêu xu hướng

Chiến lược này tận dụng tối đa khả năng mô phỏng của mạng thần kinh đối với dữ liệu phức tạp, và được hỗ trợ bằng các chỉ số như RSI và siêu xu hướng để xác minh tín hiệu, đồng thời kiểm soát rủi ro giao dịch trong khi nâng cao độ chính xác phán đoán.

Lợi thế chiến lược

  • Mạng thần kinh định giá xu hướng mô hình hóa dữ liệu đa chiều

  • RSI dừng lỗ bảo vệ lợi nhuận, phán quyết hỗ trợ siêu xu hướng

  • Xác thực kết hợp đa chỉ số, cải thiện chất lượng tín hiệu

Rủi ro chiến lược

  • Cần nhiều dữ liệu để đào tạo mạng thần kinh

  • RSI và các tham số siêu xu hướng cần điều chỉnh tối ưu

  • Hiệu quả phụ thuộc vào mô hình, có bất ổn

Tóm tắt

Chiến lược này sử dụng công nghệ học máy hỗ trợ đánh giá các chỉ số truyền thống để kiểm soát rủi ro trong khi theo đuổi hiệu quả cao. Tuy nhiên, điều chỉnh tham số và khả năng giải thích mô hình vẫn cần được hoàn thiện.

Mã nguồn chiến lược
/*backtest
start: 2023-08-14 00:00:00
end: 2023-09-13 00:00:00
period: 2h
basePeriod: 15m
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
*/

//@version=4
//ANN taken from https://www.tradingview.com/script/Eq4zZsTI-ANN-MACD-BTC/
//it only work for BTC as the ANN is trained for this data only
//super trend https://www.tradingview.com/script/VLWVV7tH-SuperTrend/
// Strategy version created for @che_trader
strategy ("ANN RSI SUPER TREND STRATEGY BY che_trader", overlay = true)
qty = input(10000, "Buy quantity")

testStartYear = input(2019, "Backtest Start Year")
testStartMonth = input(1, "Backtest Start Month")
testStartDay = input(1, "Backtest Start Day")
testStartHour = input(0, "Backtest Start Hour")
testStartMin = input(0, "Backtest Start Minute")
testPeriodStart = timestamp(testStartYear,testStartMonth,testStartDay,testStartHour,testStartMin)
testStopYear = input(2099, "Backtest Stop Year")
testStopMonth = input(1, "Backtest Stop Month")
testStopDay = input(30, "Backtest Stop Day")
testPeriodStop = timestamp(testStopYear,testStopMonth,testStopDay,0,0)
testPeriod() => true

max_bars_back = (21)
src = close[0]

// Essential Functions

// Highest - Lowest Functions ( All efforts goes to RicardoSantos )

f_highest(_src, _length)=>
    _adjusted_length = _length < 1 ? 1 : _length
    _value = _src
    for _i = 0 to (_adjusted_length-1)
        _value := _src[_i] >= _value ? _src[_i] : _value
    _return = _value

f_lowest(_src, _length)=>
    _adjusted_length = _length < 1 ? 1 : _length
    _value = _src
    for _i = 0 to (_adjusted_length-1)
        _value := _src[_i] <= _value ? _src[_i] : _value
    _return = _value

// Function Sum  

f_sum(_src , _length) => 

    _output  = 0.00 
    
    _length_adjusted = _length < 1 ? 1 : _length
    
    for i = 0 to _length_adjusted-1
        _output := _output + _src[i]


// Unlocked Exponential Moving Average Function

f_ema(_src, _length)=>
    _length_adjusted = _length < 1 ? 1 : _length
    _multiplier = 2 / (_length_adjusted + 1)
    _return  = 0.00
    _return := na(_return[1]) ? _src : ((_src - _return[1]) * _multiplier) + _return[1]


// Unlocked Moving Average Function 

f_sma(_src, _length)=>
    
    _output = 0.00
    _length_adjusted = _length < 0 ? 0 : _length
    w = cum(_src)

    _output:= (w - w[_length_adjusted]) / _length_adjusted
   
    _output    


// Definition : Function Bollinger Bands

Multiplier = 2 
_length_bb = 20


e_r = f_sma(src,_length_bb)


// Function Standard Deviation : 

f_stdev(_src,_length) =>

    float _output = na 
    _length_adjusted = _length < 2 ? 2 : _length
    _avg  = f_ema(_src , _length_adjusted)
    evar  = (_src - _avg) * (_src - _avg)
    evar2 = ((f_sum(evar,_length_adjusted))/_length_adjusted)
    
    _output := sqrt(evar2)


std_r = f_stdev(src , _length_bb )


upband = e_r + (Multiplier * std_r)  // Upband
dnband = e_r - (Multiplier * std_r)  // Lowband
basis  = e_r                         // Midband

// Function : RSI


length = input(14, minval=1) // 


f_rma(_src, _length) =>
    _length_adjusted = _length < 1 ? 1 : _length
    alpha = _length_adjusted
    sum = 0.0
    sum := (_src + (alpha - 1) * nz(sum[1])) / alpha



f_rsi(_src, _length) => 

    _output = 0.00 
    _length_adjusted = _length < 0 ? 0 : _length

    u = _length_adjusted < 1 ? max(_src - _src[_length_adjusted], 0) : max(_src - _src[1] , 0) // upward change
    d = _length_adjusted < 1 ? max(_src[_length_adjusted] - _src, 0) : max(_src[1] - _src , 0) // downward change
    rs = f_rma(u, _length) / f_rma(d, _length)
    res = 100 - 100 / (1 + rs)
    res


_rsi = f_rsi(src, length)


// MACD 

_fastLength   = input(12 , title = "MACD Fast Length")
_slowlength   = input(26 , title = "MACD Slow Length")
_signalLength = input(9  , title = "MACD Signal Length")


_macd   = f_ema(close, _fastLength) - f_ema(close, _slowlength)
_signal = f_ema(_macd, _signalLength)
	   
_macdhist = _macd - _signal


// Inputs on Tangent Function : 

tangentdiff(_src) => nz((_src - _src[1]) / _src[1] ) 


// Deep Learning Activation Function (Tanh) : 

ActivationFunctionTanh(v) => (1 - exp(-2 * v))/( 1 + exp(-2 * v))


// DEEP LEARNING 

// INPUTS : 

input_1 = tangentdiff(volume)
input_2 = tangentdiff(dnband)
input_3 = tangentdiff(e_r)
input_4 = tangentdiff(upband)
input_5 = tangentdiff(_rsi)
input_6 = tangentdiff(_macdhist)

// LAYERS : 

// Input Layers 

n_0 = ActivationFunctionTanh(input_1 + 0)   
n_1 = ActivationFunctionTanh(input_2 + 0) 
n_2 = ActivationFunctionTanh(input_3 + 0) 
n_3 = ActivationFunctionTanh(input_4 + 0) 
n_4 = ActivationFunctionTanh(input_5 + 0)
n_5 = ActivationFunctionTanh(input_6 + 0)


// Hidden Layers 

n_6   = ActivationFunctionTanh( -2.580743 * n_0 + -1.883627 * n_1 + -3.512462 * n_2 + -0.891063 * n_3 + -0.767728 * n_4 + -0.542699 * n_5 +  0.221093) 
n_7   = ActivationFunctionTanh( -0.131977 * n_0 + -1.543499 * n_1 +  0.019450 * n_2 +  0.041301 * n_3 + -0.926690 * n_4 + -0.797512 * n_5 + -1.804061) 
n_8   = ActivationFunctionTanh( -0.587905 * n_0 + -7.528007 * n_1 + -5.273207 * n_2 +  1.633836 * n_3 +  6.099666 * n_4 +  3.509443 * n_5 + -4.384254) 
n_9   = ActivationFunctionTanh( -1.026331 * n_0 + -1.289491 * n_1 + -1.702887 * n_2 + -1.052681 * n_3 + -1.031452 * n_4 + -0.597999 * n_5 + -1.178839) 
n_10  = ActivationFunctionTanh( -5.393730 * n_0 + -2.486204 * n_1 +  3.655614 * n_2 +  1.051512 * n_3 + -2.763198 * n_4 +  6.062295 * n_5 + -6.367982) 
n_11  = ActivationFunctionTanh(  1.246882 * n_0 + -1.993206 * n_1 +  1.599518 * n_2 +  1.871801 * n_3 +  0.294797 * n_4 + -0.607512 * n_5 + -3.092821) 
n_12  = ActivationFunctionTanh( -2.325161 * n_0 + -1.433500 * n_1 + -2.928094 * n_2 + -0.715416 * n_3 + -0.914663 * n_4 + -0.485397 * n_5 + -0.411227) 
n_13  = ActivationFunctionTanh( -0.350585 * n_0 + -0.810108 * n_1 + -1.756149 * n_2 + -0.567176 * n_3 + -0.954021 * n_4 + -1.027830 * n_5 + -1.349766) 


// Output Layer 

_output  = ActivationFunctionTanh(2.588784 * n_6  + 0.100819 * n_7  + -5.305373 * n_8  + 1.167093 * n_9  + 
                                  3.770143 * n_10 + 1.269190 * n_11 +  2.090862 * n_12 + 0.839791 * n_13 + -0.196165)

_chg_src = tangentdiff(src) * 100

_seed = (_output - _chg_src)
// BEGIN ACTUAL STRATEGY
length1 = input(title="RSI Period", type=input.integer, defval=21)
mult = input(title="RSI Multiplier", type=input.float, step=0.1, defval=4.0)
wicks = input(title="Take Wicks into Account ?", type=input.bool, defval=false)
showLabels = input(title="Show Buy/Sell Labels ?", type=input.bool, defval=true)

srsi = mult* rsi(_seed ,length1)

longStop = hl2 - srsi
longStopPrev = nz(longStop[1], longStop)
longStop := (wicks ? low[1] : close[1]) > longStopPrev ? max(longStop, longStopPrev) : longStop

shortStop = hl2 + srsi
shortStopPrev = nz(shortStop[1], shortStop)
shortStop := (wicks ? high[1] : close[1]) < shortStopPrev ? min(shortStop, shortStopPrev) : shortStop

dir = 1
dir := nz(dir[1], dir)
dir := dir == -1 and (wicks ? high : close) > shortStopPrev ? 1 : dir == 1 and (wicks ? low : close) < longStopPrev ? -1 : dir

longColor = color.green
shortColor = color.red

plot(dir == 1 ? longStop : na, title="Long Stop", style=plot.style_linebr, linewidth=2, color=longColor)
buySignal = dir == 1 and dir[1] == -1
plotshape(buySignal ? longStop : na, title="Long Stop Start", location=location.absolute, style=shape.circle, size=size.tiny, color=longColor, transp=0)
plotshape(buySignal and showLabels ? longStop : na, title="Buy Label", text="Buy", location=location.absolute, style=shape.labelup, size=size.tiny, color=longColor, textcolor=color.white, transp=0)

plot(dir == 1 ? na : shortStop, title="Short Stop", style=plot.style_linebr, linewidth=2, color=shortColor)
sellSignal = dir == -1 and dir[1] == 1
plotshape(sellSignal ? shortStop : na, title="Short Stop Start", location=location.absolute, style=shape.circle, size=size.tiny, color=shortColor, transp=0)
plotshape(sellSignal and showLabels ? shortStop : na, title="Sell Label", text="Sell", location=location.absolute, style=shape.labeldown, size=size.tiny, color=shortColor, textcolor=color.white, transp=0)





if testPeriod() and buySignal
    strategy.entry("Long",strategy.long)

if testPeriod() and sellSignal
    strategy.entry("Short",strategy.short)