该策略是一个基于多重技术指标和动态风险管理的量化交易策略。它结合了EMA趋势跟踪、ATR波动率、RSI超买超卖以及K线形态识别等多个维度,通过自适应调仓和动态止损来实现收益风险的平衡。策略采用了分批止盈和移动止损的方式来保护盈利。
策略主要通过以下几个方面来实现交易: 1. 使用5周期和10周期的EMA均线交叉来确定趋势方向 2. 通过RSI指标判断超买超卖区域,避免追涨杀跌 3. 利用ATR指标动态调整止损位置和仓位大小 4. 结合K线形态(吞没、锤子、流星)作为辅助入场信号 5. 采用基于ATR的动态滑点补偿机制 6. 通过交易量确认来过滤虚假信号
这是一个综合了多个技术指标的成熟策略系统,通过动态风险管理和多重信号验证来提高交易的稳定性。策略的核心优势在于其自适应性和完善的风险控制体系,但仍需要在实盘中进行充分验证和持续优化。
/*backtest
start: 2024-10-01 00:00:00
end: 2024-10-31 23:59:59
period: 2h
basePeriod: 2h
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
*/
//@version=5
strategy("Optimized Scalping with High Risk-Reward", overlay=true)
// Input for EMA periods
shortEMA_length = input(5, title="Short EMA Length")
longEMA_length = input(10, title="Long EMA Length")
// ATR for dynamic stop-loss
atrPeriod = input(14, title="ATR Period")
atrMultiplier = input(1.5, title="ATR Multiplier for Stop Loss")
// Calculate EMAs
shortEMA = ta.ema(close, shortEMA_length)
longEMA = ta.ema(close, longEMA_length)
// ATR calculation for dynamic stop loss
atr = ta.atr(atrPeriod)
// RSI for overbought/oversold conditions
rsi = ta.rsi(close, 14)
// Plot EMAs
plot(shortEMA, color=color.blue, title="Short EMA")
plot(longEMA, color=color.red, title="Long EMA")
// Dynamic Slippage based on ATR
dynamic_slippage = math.max(5, atr * 0.5)
// Candlestick pattern recognition
bullish_engulfing = close[1] < open[1] and close > open and close > open[1] and close > close[1]
hammer = close > open and (high - close) / (high - low) > 0.6 and (open - low) / (high - low) < 0.2
bearish_engulfing = open[1] > close[1] and open > close and open > open[1] and close < close[1]
shooting_star = close < open and (high - open) / (high - low) > 0.6 and (close - low) / (high - low) < 0.2
// Enhanced conditions with volume and RSI check
buy_condition = (bullish_engulfing or hammer) and close > shortEMA and shortEMA > longEMA and volume > ta.sma(volume, 20) and rsi < 70
sell_condition = (bearish_engulfing or shooting_star) and close < shortEMA and shortEMA < longEMA and volume > ta.sma(volume, 20) and rsi > 30
// Dynamic ATR multiplier based on recent volatility
volatility = atr
adaptiveMultiplier = atrMultiplier + (volatility - ta.sma(volatility, 50)) / ta.sma(volatility, 50) * 0.5
// Execute buy trades with slippage consideration
if (buy_condition)
strategy.entry("Buy", strategy.long)
stop_loss_buy = strategy.position_avg_price - atr * adaptiveMultiplier - dynamic_slippage
take_profit_buy = strategy.position_avg_price + atr * adaptiveMultiplier * 3 + dynamic_slippage
strategy.exit("Exit Buy", "Buy", stop=stop_loss_buy, limit=take_profit_buy)
// Execute sell trades with slippage consideration
if (sell_condition)
strategy.entry("Sell", strategy.short)
stop_loss_sell = strategy.position_avg_price + atr * adaptiveMultiplier + dynamic_slippage
take_profit_sell = strategy.position_avg_price - atr * adaptiveMultiplier * 3 - dynamic_slippage
strategy.exit("Exit Sell", "Sell", stop=stop_loss_sell, limit=take_profit_sell)
// Risk Management
maxLossPerTrade = input.float(0.01, title="Max Loss Per Trade (%)", minval=0.01, maxval=1, step=0.01) // 1% max loss per trade
dailyLossLimit = input.float(0.03, title="Daily Loss Limit (%)", minval=0.01, maxval=1, step=0.01) // 3% daily loss limit
maxLossAmount_buy = strategy.position_avg_price * maxLossPerTrade
maxLossAmount_sell = strategy.position_avg_price * maxLossPerTrade
if (strategy.position_size > 0)
strategy.exit("Max Loss Buy", "Buy", stop=strategy.position_avg_price - maxLossAmount_buy - dynamic_slippage)
if (strategy.position_size < 0)
strategy.exit("Max Loss Sell", "Sell", stop=strategy.position_avg_price + maxLossAmount_sell + dynamic_slippage)
// Daily loss limit logic
var float dailyLoss = 0.0
if (dayofweek != dayofweek[1])
dailyLoss := 0.0 // Reset daily loss tracker at the start of a new day
if (strategy.closedtrades > 0)
dailyLoss := dailyLoss + strategy.closedtrades.profit(strategy.closedtrades - 1)
if (dailyLoss < -strategy.initial_capital * dailyLossLimit)
strategy.close_all("Daily Loss Limit Hit")
// Breakeven stop after a certain profit with a delay
if (strategy.position_size > 0 and close > strategy.position_avg_price + atr * 1.5 and bar_index > strategy.opentrades.entry_bar_index(0) + 5)
strategy.exit("Breakeven Buy", from_entry="Buy", stop=strategy.position_avg_price)
if (strategy.position_size < 0 and close < strategy.position_avg_price - atr * 1.5 and bar_index > strategy.opentrades.entry_bar_index(0) + 5)
strategy.exit("Breakeven Sell", from_entry="Sell", stop=strategy.position_avg_price)
// Partial Profit Taking
if (strategy.position_size > 0 and close > strategy.position_avg_price + atr * 1.5)
strategy.close("Partial Close Buy", qty_percent=50) // Use strategy.close for partial closure at market price
if (strategy.position_size < 0 and close < strategy.position_avg_price - atr * 1.5)
strategy.close("Partial Close Sell", qty_percent=50) // Use strategy.close for partial closure at market price
// Trailing Stop with ATR type
if (strategy.position_size > 0)
strategy.exit("Trailing Stop Buy", from_entry="Buy", trail_offset=atr * 1.5, trail_price=strategy.position_avg_price)
if (strategy.position_size < 0)
strategy.exit("Trailing Stop Sell", from_entry="Sell", trail_offset=atr * 1.5, trail_price=strategy.position_avg_price)