Adaptive Zero Lag EMA Handelsstrategie


Erstellungsdatum: 2023-09-13 14:22:55 zuletzt geändert: 2023-09-13 14:22:55
Kopie: 1 Klicks: 754
1
konzentrieren Sie sich auf
1621
Anhänger

Diese Strategie nutzt die EMA, die sich an die EMA ohne Rückstand anpasst, um Trends zu bestimmen und Handelssignale zu erzeugen. Die EMA kann die Parameter dynamisch anpassen, um die Rückstandsprobleme effektiv zu beseitigen. Sie ist eine typische Trend-Tracking-Handelsstrategie.

Die Strategie:

  1. Berechnen Sie die EMA-Anzeige für die Anpassung an die Nullverzögerung mit zwei Anpassungsalgorithmen, der Achs- und der I-Q-Methode.

  2. EMA für die normale EMA, EC für die adaptive Nullverzögerung EMA.

  3. Wenn der EC über EMA mehr macht, ist der EC unter EMA leer.

  4. Berechnung der Fehlerkurve und Einstellung des Tiefstwerts zur False-Signal-Filterung.

  5. Setzen Sie einen festen Stop-Loss-Stop-Point, um Gewinne zu sichern und Risiken zu kontrollieren.

Die Vorteile der Strategie:

  1. Die Anpassung der EMA kann den Rückstand der Indikatoren wirksam verringern.

  2. Die Threshold-Filter verbessern die Signalqualität und verhindern falsche Durchbrüche.

  3. Die Schadensbegrenzung ist praktisch und einfach zu bedienen.

Die Risiken dieser Strategie:

  1. Die EMA-Parameter sind instabil und können ausfallen.

  2. Die Fixed Stop-Loss-Schranken sind schwer an Veränderungen am Markt angepasst.

  3. Es gibt keine Einschränkung für die Höhe der einzelnen Verluste, es besteht ein höheres Risiko für Verluste.

Zusammenfassend lässt sich sagen, dass die Strategie, die sich an EMA-Indikatoren anpasst, Trends zu verfolgen, die Rückstandsprobleme zu einem gewissen Grad verringern kann, aber die Parameterstabilität berücksichtigen muss und mit einer optimierten Stop-Loss-Stopp-Mechanik kombiniert werden muss, um das Risiko zu kontrollieren.

Strategiequellcode
/*backtest
start: 2023-09-05 00:00:00
end: 2023-09-12 00:00:00
period: 2h
basePeriod: 15m
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
*/

//@version=3
strategy(title="Adaptive Zero Lag EMA v2 (w/ Backtest Date Range)", shorttitle="AZLEMA", overlay = true,  commission_type=strategy.commission.cash_per_contract, slippage = 5, pyramiding=1, calc_on_every_tick=true)

src = input(title="Source",  defval=close)
secType = input(title="Security Type", options=["Forex", "Metal Spot", "Cryptocurrency","Custom"], defval="Forex")
contracts = input(title="Custom # of Contracts", defval=1, step=1)
limit = input(title="Max Lots",  defval=100)
Period = input(title="Period",  defval = 20)
adaptive = input(title="Adaptive Method", options=["Off", "Cos IFM", "I-Q IFM", "Average"], defval="Cos IFM")
GainLimit = input(title="Gain Limit",  defval = 8)
Threshold = input(title="Threshold",  defval=0.05, step=0.01)
fixedSL = input(title="SL Points", defval=70)
fixedTP = input(title="TP Points", defval=10)
risk = input(title='Risk', defval=0.01, step=0.01)

// === INPUT BACKTEST RANGE ===
FromMonth = input(defval = 1, title = "From Month", minval = 1, maxval = 12)
FromDay   = input(defval = 1, title = "From Day", minval = 1, maxval = 31)
FromYear  = input(defval = 2019, title = "From Year", minval = 2015)
ToMonth   = input(defval = 1, title = "To Month", minval = 1, maxval = 12)
ToDay     = input(defval = 1, title = "To Day", minval = 1, maxval = 31)
ToYear    = input(defval = 9999, title = "To Year", minval = 2015)

// === FUNCTION EXAMPLE ===
start     = timestamp(FromYear, FromMonth, FromDay, 00, 00)  // backtest start window
finish    = timestamp(ToYear, ToMonth, ToDay, 23, 59)        // backtest finish window
window()  => true

range = 50 //input(title="Max Period",  defval=60, minval=8, maxval=100)

PI = 3.14159265359
lenIQ = 0.0
lenC = 0.0

//##############################################################################
//I-Q IFM
//##############################################################################
if(adaptive=="I-Q IFM" or adaptive=="Average")
    imult = 0.635
    qmult = 0.338
    inphase = 0.0
    quadrature = 0.0
    re = 0.0
    im = 0.0
    deltaIQ = 0.0
    instIQ = 0.0
    V = 0.0
    
    P = src - src[7]
    inphase := 1.25*(P[4] - imult*P[2]) + imult*nz(inphase[3])
    quadrature := P[2] - qmult*P + qmult*nz(quadrature[2])
    re := 0.2*(inphase*inphase[1] + quadrature*quadrature[1]) + 0.8*nz(re[1])
    im := 0.2*(inphase*quadrature[1] - inphase[1]*quadrature) + 0.8*nz(im[1])
    if (re!= 0.0)
        deltaIQ := atan(im/re)
    for i=0 to range
        V := V + deltaIQ[i]
        if (V > 2*PI and instIQ == 0.0)
            instIQ := i
    if (instIQ == 0.0)
        instIQ := nz(instIQ[1])
    lenIQ := 0.25*instIQ + 0.75*nz(lenIQ[1])

//##############################################################################
//COSINE IFM
//##############################################################################
if(adaptive == "Cos IFM" or adaptive == "Average")
    s2 = 0.0
    s3 = 0.0
    deltaC = 0.0
    instC = 0.0
    v1 = 0.0
    v2 = 0.0
    v4 = 0.0
    
    v1 := src - src[7]
    s2 := 0.2*(v1[1] + v1)*(v1[1] + v1) + 0.8*nz(s2[1])
    s3 := 0.2*(v1[1] - v1)*(v1[1] - v1) + 0.8*nz(s3[1])
    if (s2 != 0)
        v2 := sqrt(s3/s2)
    if (s3 != 0)
        deltaC := 2*atan(v2)
    for i = 0 to range
        v4 := v4 + deltaC[i]
        if (v4 > 2*PI and instC == 0.0)
            instC := i - 1
    if (instC == 0.0)
        instC := instC[1]
    lenC := 0.25*instC + 0.75*nz(lenC[1])

if (adaptive == "Cos IFM")
    Period := round(lenC)
if (adaptive == "I-Q IFM")
    Period := round(lenIQ)
if (adaptive == "Average")
    Period := round((lenC + lenIQ)/2)

//##############################################################################
//ZERO LAG EXPONENTIAL MOVING AVERAGE
//##############################################################################
LeastError = 1000000.0
EC = 0.0
Gain = 0.0
EMA = 0.0
Error = 0.0
BestGain = 0.0

alpha =2/(Period + 1)
EMA := alpha*src + (1-alpha)*nz(EMA[1])

for i = -GainLimit to GainLimit
    Gain := i/10
    EC := alpha*(EMA + Gain*(src - nz(EC[1]))) + (1 - alpha)*nz(EC[1])
    Error := src - EC
    if(abs(Error)<LeastError)
        LeastError := abs(Error)
        BestGain := Gain

EC := alpha*(EMA + BestGain*(src - nz(EC[1]))) + (1-alpha)*nz(EC[1])

plot(EC, title="EC", color=orange, linewidth=2)
plot(EMA, title="EMA", color=red, linewidth=2)

//##############################################################################
//Trade Logic & Risk Management
//##############################################################################
buy = crossover(EC,EMA) and 100*LeastError/src > Threshold
sell = crossunder(EC,EMA) and 100*LeastError/src > Threshold

secScaler = secType == "Forex" ? 100000 : secType == "Metal Spot" ? 100 : secType == "Cryptocurrency" ? 10000 : secType == "Custom" ? contracts : 0
strategy.initial_capital = 50000
balance = strategy.initial_capital + strategy.netprofit
if (time>timestamp(2016, 1, 1 , 0, 0) and balance > 0)
    //LONG
    lots = ((risk * balance)/fixedSL)*secScaler
    lots := lots > limit * secScaler ? limit * secScaler : lots
    strategy.entry("BUY", strategy.long,  oca_name="BUY",  when=buy and window())
    strategy.exit("B.Exit", "BUY", qty_percent = 100, loss=fixedSL, trail_offset=15, trail_points=fixedTP)
    //SHORT
    strategy.entry("SELL", strategy.short,  oca_name="SELL",when=sell and window())
    strategy.exit("S.Exit", "SELL", qty_percent = 100, loss=fixedSL, trail_offset=15, trail_points=fixedTP)