
在上一篇文章《数字货币中的刷量型对敲策略》中,我们详细介绍了一种通过同价买卖来积累交易量的策略框架。该策略的主要目的是获取交易所返佣或等级优惠,而非通过价差套利获得收益。虽然刷量型对敲策略在学习交易框架架构方面具有参考价值,但其实际盈利能力有限,且可能面临合规风险。
本篇文章将在前文的基础上,介绍另一种更具实用价值的做市策略——盘口策略。与刷量型对敲策略不同,盘口策略是一种真正的套利策略,通过在买卖价格之间设置价差来获取收益,更符合传统做市商的盈利模式。
本文展示的盘口策略代码仅为学习参考框架,不具有任何实盘运行经验。文中的策略实现仅用于技术学习和研究目的,未经过实际市场环境的充分验证。读者在参考本文内容时,务必进行充分的回测验证和风险评估,切勿直接用于实盘交易。
盘口策略是一种利用市场订单簿(即盘口深度)进行套利的做市策略。在这种策略下,做市商通过在买卖价格的差距内,根据市场波动动态调整挂单价格,进行挂单和撤单操作,从而利用市场的流动性和短期价格波动来获得利润。
| 特征 | 刷量型对敲策略 | 盘口策略 |
|---|---|---|
| 买卖价格 | 相同价格 | 不同价格(有价差) |
| 盈利模式 | 交易所返佣/激励 | 买卖价差 |
| 风险暴露 | 低(同价成交) | 高(价格波动风险) |
| 实用性 | 有限 | 较高 |
与对敲策略一致,本文的代码实现了一个基于盘口策略的做市策略,主要分为两个类:
MidClass:交易所中间层,负责与交易所的接口交互,获取市场数据、账户信息、订单状态等。MarketMaker:做市策略类,负责执行盘口策略,动态生成挂单价格,生成挂单、检查订单状态、更新策略状态等。在 MarketMaker 类的初始化方法中,首先获取交易所的精度信息,并初始化策略参数,如交易量精度、价格精度等。
self.precision_info = self.exchange_mid.get_precision() # 获取精度信息
self.price_precision = self.precision_info['price_precision'] # 价格精度
self.amount_precision = self.precision_info['amount_precision'] # 交易量精度
盘口策略的核心是生成盘口挂单字典,包含买卖价格和数量。代码中通过计算中间价和价格偏移量,生成盘口挂单字典。
盘口挂单价格的移动是通过计算价格偏移量来实现的。价格偏移量是根据价格范围(price_range)和最小价格间隔(min_price_step)计算得出的。
price_offset = price_range - self.pending_order_count * min_price_step # 计算价格偏移量
do_trade = price_offset > 0
price_range:价格范围,表示挂单价格与中间价的偏离范围。min_price_step:最小价格间隔,表示每次挂单价格的最小调整步长。price_offset:价格偏移量,表示当前挂单价格与中间价的偏离量。如果价格偏移量大于 0,则表示可以继续挂单;否则,重置挂单次数。
根据价格偏移量,计算买卖价格,并生成挂单字典。
if do_trade:
buy_price = mid_price - price_offset # 计算买价
buy_price = round(buy_price, self.price_precision) # 四舍五入买价
sell_price = mid_price + price_offset # 计算卖价
sell_price = round(sell_price, self.price_precision) # 四舍五入卖价
trade_dict = {
'do_trade': do_trade,
'buy_price': buy_price,
'sell_price': sell_price,
'amount': trade_amount
}
Log('返回盘口挂单字典:', trade_dict)
return trade_dict
else:
self.pending_order_count = 0 # 重置挂单次数
buy_price:买价,计算为中间价减去价格偏移量。sell_price:卖价,计算为中间价加上价格偏移量。trade_dict:挂单字典,包含买卖价格和数量。根据生成的盘口挂单字典,执行盘口交易。代码中通过调用交易所中间层的 create_order 方法,同时挂出买单和卖单。
def make_trade_by_dict(self, trade_dict):
if trade_dict['do_trade']:
buy_id = self.exchange_mid.create_order('buy', trade_dict['buy_price'], trade_dict['amount']) # 挂买单
sell_id = self.exchange_mid.create_order('sell', trade_dict['sell_price'], trade_dict['amount']) # 挂卖单
self.traded_pairs['pan_kou'].append({
'buy_id': buy_id, 'sell_id': sell_id, 'init_time': time.time(), 'amount': trade_dict['amount']
})
定期检查订单状态,处理未完成的订单。订单状态处理逻辑与对敲策略类似,但由于存在价差,部分成交的情况会产生实际的盈利或亏损。
1. 盘口挂单价格移动不够灵活
本策略中的价格调整机制相对简单,存在以下限制:
price_offset = price_range - self.pending_order_count * min_price_step # 计算价格偏移量
price_range 和 min_price_step 是固定参数,不能根据市场状况实时调整改进方向: - 引入基于波动率的动态价格调整机制 - 根据市场深度和流动性调整挂单价格 - 增加对市场趋势的判断,避免逆势挂单
2. 库存风险(Inventory Risk)
盘口策略面临严重的库存风险问题:
风险表现: - 单边成交风险:当只有买单或卖单成交时,会导致持仓不平衡 - 方向性风险:在趋势市场中,可能大量累积单向持仓 - 资金占用:过多的库存会占用大量资金,影响策略效率
代码中的风险点:
if buy_order_status['Status'] == ORDER_STATE_PENDING:
self.sell_amount += traded_pair['amount'] # 只有卖单成交,积累空头持仓
elif sell_order_status['Status'] == ORDER_STATE_PENDING:
self.buy_amount += traded_pair['amount'] # 只有买单成交,积累多头持仓
库存风险的影响: - 盈利能力下降:单边持仓在不利价格变动时会产生亏损 - 流动性压力:需要额外的资金来对冲库存风险 - 策略失效:极端情况下可能导致策略无法继续运行
风险管理措施: - 库存限制:设置最大持仓限制,防止过度累积 - 动态对冲:当库存超过阈值时,主动平仓或对冲 - 价格倾斜:根据当前库存调整买卖价格,鼓励反向交易
盘口策略是一种基于市场深度的做市策略,通过动态调整买卖单的价格和数量,维持市场的流动性。与刷量型对敲策略相比,盘口策略具有以下特点:
✅ 优势 - 通过价差获取真正的套利收益 - 符合传统做市商的盈利模式 - 提供真正的市场流动性
❌ 挑战 - 面临市场价格波动风险 - 需要更复杂的风险管理 - 对资金和技术要求更高 - 价格调整机制不够灵活:线性的价格移动机制难以适应复杂的市场环境 - 库存风险突出:单边成交容易导致持仓不平衡,在趋势市场中风险尤为显著
🔮 未来优化方向
针对当前盘口策略存在的不足,未来可以从以下几个方向进行优化改进:
动态做市策略:
库存管理策略:
多层级做市策略:
智能风险管理:
import time, json
class MidClass:
def __init__(self, exchange_instance):
'''
初始化交易所中间层
Args:
exchange_instance: FMZ的交易所结构
'''
self.init_timestamp = time.time() # 记录初始化时间
self.exchange = exchange_instance # 保存交易所对象
self.exchange_name = self.exchange.GetName() # 获取交易所名称
self.trading_pair = self.exchange.GetCurrency() # 获取交易对名称(如 BTC_USDT)
def get_precision(self):
'''
获取交易对的精度信息
Returns:
返回包含精度信息的字典,失败时返回 None
'''
symbol_code = self.exchange.GetCurrency()
ticker = self.exchange.GetTicker(symbol_code) # 回测系统需要
exchange_info = self.exchange.GetMarkets()
data = exchange_info.get(symbol_code)
if not data:
Log("获取市场信息失败", GetLastError())
return None
# 获取该交易对的精度信息
self.precision_info = {
'tick_size': data['TickSize'], # 价格精度
'amount_size': data['AmountSize'], # 数量精度
'price_precision': data['PricePrecision'], # 价格小数位精度
'amount_precision': data['AmountPrecision'], # 数量小数位精度
'min_qty': data['MinQty'], # 最小下单数量
'max_qty': data['MaxQty'] # 最大下单数量
}
return self.precision_info
def get_account(self):
'''
获取账户信息
Returns:
获取信息成功返回 True,获取信息失败返回 False
'''
self.balance = '---' # 账户余额
self.amount = '---' # 账户持仓量
self.frozen_balance = '---' # 冻结余额
self.frozen_stocks = '---' # 冻结持仓量
self.init_balance = None
self.init_stocks = None
self.init_equity = None
try:
account_info = self.exchange.GetAccount() # 获取账户信息
self.balance = account_info['Balance'] # 更新账户余额
self.amount = account_info['Stocks'] # 更新持仓量
self.frozen_balance = account_info['FrozenBalance'] # 更新冻结余额
self.frozen_stocks = account_info['FrozenStocks'] # 更新冻结持仓量
self.equity = self.balance + self.frozen_balance + (self.amount + self.frozen_stocks) * self.last_price
if not self.init_balance or not self.init_stocks or not self.init_equity:
if _G("init_balance") and _G("init_balance") > 0 and _G("init_stocks") and _G("init_stocks") > 0:
self.init_balance = round(_G("init_balance"), 2)
self.init_stocks = round(_G("init_stocks"), 2)
self.init_equity = round(_G("init_equity"), 2)
else:
self.init_balance = round(self.balance + self.frozen_balance, 2)
self.init_stocks = self.amount + self.frozen_stocks
self.init_equity = round(self.init_balance + (self.init_stocks * self.last_price), 2)
_G("init_balance", self.init_balance)
_G("init_stocks", self.init_stocks)
_G("init_equity", self.init_equity)
Log('获取初始eqity', self.init_equity)
self.profit = self.equity - self.init_equity
self.profitratio = round((self.equity - self.init_equity)/self.init_equity, 4) * 100
return True
except:
return False # 获取账户信息失败
def get_ticker(self):
'''
获取市价信息(如买一价、卖一价、最高价、最低价等)
Returns:
获取信息成功返回 True,获取信息失败返回 False
'''
self.high_price = '---' # 最高价
self.low_price = '---' # 最低价
self.sell_price = '---' # 卖一价
self.buy_price = '---' # 买一价
self.last_price = '---' # 最新成交价
self.volume = '---' # 成交量
try:
ticker_info = self.exchange.GetTicker() # 获取市价信息
self.high_price = ticker_info['High'] # 更新最高价
self.low_price = ticker_info['Low'] # 更新最低价
self.sell_price = ticker_info['Sell'] # 更新卖一价
self.buy_price = ticker_info['Buy'] # 更新买一价
self.last_price = ticker_info['Last'] # 更新最新成交价
self.volume = ticker_info['Volume'] # 更新成交量
return True
except:
return False # 获取市价信息失败
def get_depth(self):
'''
获取深度信息(买卖盘的挂单列表)
Returns:
获取信息成功返回 True,获取信息失败返回 False
'''
self.ask_orders = '---' # 卖盘挂单列表
self.bid_orders = '---' # 买盘挂单列表
try:
depth_info = self.exchange.GetDepth() # 获取深度信息
self.ask_orders = depth_info['Asks'] # 更新卖盘挂单列表
self.bid_orders = depth_info['Bids'] # 更新买盘挂单列表
return True
except:
return False # 获取深度信息失败
def get_ohlc_data(self, period=PERIOD_M5):
'''
获取K线信息
Args:
period: K线周期,PERIOD_M1 指1分钟, PERIOD_M5 指5分钟, PERIOD_M15 指15分钟,
PERIOD_M30 指30分钟, PERIOD_H1 指1小时, PERIOD_D1 指一天。
'''
self.ohlc_data = self.exchange.GetRecords(period) # 获取K线数据
def create_order(self, order_type, price, amount):
'''
提交一个挂单信息
Args:
order_type:挂单类型,'buy'指挂买单,'sell'指挂卖单
price:挂单价格
amount:挂单数量
Returns:
挂单Id号,可用以取消挂单
'''
if order_type == 'buy':
try:
order_id = self.exchange.Buy(price, amount) # 提交买单
except:
return False # 买单提交失败
elif order_type == 'sell':
try:
order_id = self.exchange.Sell(price, amount) # 提交卖单
except:
return False # 卖单提交失败
return order_id # 返回订单ID
def get_orders(self):
'''
获取未完成的订单列表
Returns:
未完成的订单列表
'''
self.open_orders = self.exchange.GetOrders() # 获取未完成订单
return self.open_orders
def cancel_order(self, order_id):
'''
取消一个挂单信息
Args:
order_id:希望取消的挂单ID号
Returns:
取消挂单成功返回 True,取消挂单失败返回 False
'''
return self.exchange.CancelOrder(order_id) # 取消订单
def refresh_data(self):
'''
刷新信息(账户、市价、深度、K线)
Returns:
刷新信息成功返回 'refresh_data_finish!' 否则返回相应刷新失败的信息提示
'''
if not self.get_ticker(): # 刷新市价信息
return 'false_get_ticker'
if not self.get_account(): # 刷新账户信息
return 'false_get_account'
if not self.get_depth(): # 刷新深度信息
return 'false_get_depth'
try:
self.get_ohlc_data() # 刷新K线信息
except:
return 'false_get_K_line_info'
return 'refresh_data_finish!' # 刷新成功
class MarketMaker:
def __init__(self, mid_class):
'''
初始化做市策略
Args:
mid_class: 交易所中间层对象
'''
self.exchange_mid = mid_class # 交易所中间层对象
self.precision_info = self.exchange_mid.get_precision() # 获取精度信息
self.done_amount = {'pan_kou': 0} # 已完成交易量
# 修正:正确分配精度信息
self.price_precision = self.precision_info['price_precision'] # 价格精度
self.amount_precision = self.precision_info['amount_precision'] # 交易量精度
self.traded_pairs = {'pan_kou': []} # 已挂单的交易对
self.pending_orders = [] # 未完成的订单状态
self.pending_order_count = 0 # 挂单次数
self.buy_amount = 0
self.sell_amount = 0
self.fee = 0
self.fee_rate = 0.08 / 100
self.chart = {
"__isStock": True,
"tooltip": {"xDateFormat": "%Y-%m-%d %H:%M:%S, %A"},
"title": {"text": "挂单数量"},
"xAxis": {"type": "datetime"},
"yAxis": {
"title": {"text": "挂单数量"},
"opposite": False
},
"series": [
{"name": "挂单买量", "id": "挂单买量", "data": []},
{"name": "挂单卖量", "id": "挂单卖量", "dashStyle": "shortdash", "data": []}
]
}
def refresh_data(self):
'''
刷新数据(账户、市价、深度、K线)
'''
self.exchange_mid.refresh_data() # 刷新交易所数据
self.position_amount = 0 if isinstance(self.exchange_mid.amount, str) else self.exchange_mid.amount # 持仓量
self.available_balance = 0 if isinstance(self.exchange_mid.balance, str) else self.exchange_mid.balance # 账户余额
self.can_buy_amount = self.available_balance / float(self.exchange_mid.buy_price) # 可买的数量
self.mid_price = (self.exchange_mid.sell_price + self.exchange_mid.buy_price) / 2 # 中间价
def make_trade_by_dict(self, trade_dict):
'''
根据交易字典执行交易
Args:
trade_dict: 交易字典
'''
Log('4按照字典开始交易')
self.refresh_data() # 刷新数据
if trade_dict['do_trade']:
Log('当前账户资金: 币数余额: ', self.position_amount, '资金余额: ', self.can_buy_amount)
Log('检查开仓: 币数限制: ', self.position_amount > trade_dict['amount'], '资金限制: ', self.can_buy_amount > trade_dict['amount'])
if self.position_amount > trade_dict['amount'] and self.can_buy_amount > trade_dict['amount']:
buy_id = self.exchange_mid.create_order('buy', trade_dict['buy_price'], trade_dict['amount']) # 挂买单
sell_id = self.exchange_mid.create_order('sell', trade_dict['sell_price'], trade_dict['amount']) # 挂卖单
self.traded_pairs['pan_kou'].append({
'buy_id': buy_id, 'sell_id': sell_id, 'init_time': time.time(), 'amount': trade_dict['amount']
})
self.last_time = time.time() # 更新上次交易时间
def handle_pending_orders(self):
'''
处理未完成的订单
'''
pending_orders = self.exchange_mid.get_orders() # 获取未完成订单
if len(pending_orders) > 0:
for order in pending_orders:
self.exchange_mid.cancel_order(order['Id']) # 取消未完成订单
def make_pankou_dict(self, price_range, min_price_step, trade_amount):
'''
生成盘口挂单字典
Args:
price_range: 价格范围
min_price_step: 最小价格间隔
trade_amount: 每次交易量
Returns:
盘口挂单字典列表
'''
Log('3制作盘口挂单字典', '移动盘口次数', self.pending_order_count)
mid_price = self.mid_price # 中间价
price_offset = price_range - self.pending_order_count * min_price_step # 计算价格偏移量
do_trade = price_offset > 0
if do_trade:
buy_price = mid_price - price_offset # 计算买价
buy_price = round(buy_price, self.price_precision) # 四舍五入买价
sell_price = mid_price + price_offset # 计算卖价
sell_price = round(sell_price, self.price_precision) # 四舍五入卖价
trade_dict = {
'do_trade': do_trade,
'buy_price': buy_price,
'sell_price': sell_price,
'amount': trade_amount
}
Log('返回盘口挂单字典:', trade_dict)
return trade_dict
else:
Log('重置移动盘口次数:', self.pending_order_count)
self.pending_order_count = 0 # 重置移动盘口次数
# 修正:当不能交易时返回None或空字典
return None
def check_order_status(self, current_time):
'''
检查订单状态
Args:
current_time: 当前时间戳
'''
Log('1开始订单信息检查')
Log(self.traded_pairs['pan_kou'])
self.buy_pending = 0
self.sell_pending = 0
for traded_pair in self.traded_pairs['pan_kou'].copy():
Log('检查订单:', traded_pair['buy_id'], traded_pair['sell_id'])
try:
buy_order_status = self.exchange_mid.exchange.GetOrder(traded_pair['buy_id']) # 获取买单状态
sell_order_status = self.exchange_mid.exchange.GetOrder(traded_pair['sell_id']) # 获取卖单状态
except:
Log(traded_pair, '取消')
self.exchange_mid.cancel_order(traded_pair['buy_id']) # 取消买单
self.exchange_mid.cancel_order(traded_pair['sell_id']) # 取消卖单
self.traded_pairs['pan_kou'].remove(traded_pair) # 移除订单
return
Log('检查订单:', traded_pair['buy_id'], buy_order_status, traded_pair['sell_id'], sell_order_status, [sell_order_status['Status'], buy_order_status['Status']])
if [sell_order_status['Status'], buy_order_status['Status']] == [0, 0]:
self.buy_pending += 1
self.sell_pending += 1
if current_time % 5 == 0:
Log('检查挂单,取消挂单(两未完)', buy_order_status['Status'], sell_order_status['Status'], current_time % 5)
self.exchange_mid.cancel_order(traded_pair['buy_id']) # 取消买单
self.exchange_mid.cancel_order(traded_pair['sell_id']) # 取消卖单
self.pending_order_count += 1 # 移动盘口次数次数加1
self.traded_pairs['pan_kou'].remove(traded_pair) # 移除订单
elif {sell_order_status['Status'], buy_order_status['Status']} == {1, 0}:
if buy_order_status['Status'] == ORDER_STATE_PENDING:
self.buy_pending += 1
if sell_order_status['Status'] == ORDER_STATE_PENDING:
self.sell_pending += 1
if current_time % 5 == 0:
Log('检查挂单,取消挂单(一未完)', buy_order_status['Status'], sell_order_status['Status'])
self.done_amount['pan_kou'] += traded_pair['amount'] # 更新交易量
if buy_order_status['Status'] == ORDER_STATE_PENDING:
self.sell_amount += traded_pair['amount']
self.fee += sell_order_status['Amount'] * self.fee_rate * sell_order_status['Price']
Log('取消该买订单,增加未完成买列表', traded_pair['buy_id'])
self.exchange_mid.cancel_order(traded_pair['buy_id']) # 取消买单
self.pending_orders.append(['buy', buy_order_status['Status']]) # 记录未完成订单
Log('清除前:', self.traded_pairs['pan_kou'])
Log('清除id:', traded_pair)
self.traded_pairs['pan_kou'].remove(traded_pair) # 移除订单
Log('清除后:', self.traded_pairs['pan_kou'])
elif sell_order_status['Status'] == ORDER_STATE_PENDING:
self.buy_amount += traded_pair['amount']
self.fee += buy_order_status['Amount'] * self.fee_rate * buy_order_status['Price']
Log('取消该卖订单,增加未完成卖列表', traded_pair['sell_id'])
self.exchange_mid.cancel_order(traded_pair['sell_id']) # 取消卖单
self.pending_orders.append(['sell', sell_order_status['Status']]) # 记录未完成订单
Log('清除前:', self.traded_pairs['pan_kou'])
Log('清除id:', traded_pair)
self.traded_pairs['pan_kou'].remove(traded_pair) # 移除订单
Log('清除后:', self.traded_pairs['pan_kou'])
elif [sell_order_status['Status'], buy_order_status['Status']] == [1, 1]:
Log('两订单都已完成')
Log('完成状态:', buy_order_status['Status'], sell_order_status['Status'], traded_pair['amount'])
self.done_amount['pan_kou'] += 2 * traded_pair['amount'] # 更新交易量
self.buy_amount += traded_pair['amount']
self.sell_amount += traded_pair['amount']
self.fee += buy_order_status['Amount'] * self.fee_rate * buy_order_status['Price']
self.fee += sell_order_status['Amount'] * self.fee_rate * sell_order_status['Price']
self.traded_pairs['pan_kou'].remove(traded_pair) # 移除订单
else:
Log('两订单处于未知状态:', buy_order_status, sell_order_status)
Log('未知订单状态:', buy_order_status['Status'], sell_order_status['Status'])
Log('未知订单信息:', traded_pair)
def update_status(self):
self.exchange_mid.refresh_data()
table1 = {
"type": "table",
"title": "账户信息",
"cols": [
"初始资金", "现存资金", "盘口买入数量", "盘口卖出数量", "费率", "总收益", "收益率"
],
"rows": [
[
self.exchange_mid.init_equity,
self.exchange_mid.equity,
round(self.buy_amount, 4),
round(self.sell_amount, 4),
round(self.fee, 2),
self.exchange_mid.profit,
str(self.exchange_mid.profitratio) + "%"
],
],
}
LogStatus(
f"初始化时间: {time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(self.exchange_mid.init_timestamp))}\n",
f"`{json.dumps(table1)}`\n",
f"最后执行时间: {_D()}\n"
)
LogProfit(round(self.exchange_mid.profit, 3), '&')
def plot_pending(self):
Log('盘口挂单数量:', self.buy_pending, self.sell_pending)
self.obj_chart = Chart(self.chart)
now_time = int(time.time() * 1000)
# 更新挂单买量数据
self.obj_chart.add(0, [now_time, self.buy_pending])
# 更新挂单卖量数据
self.obj_chart.add(1, [now_time, self.sell_pending])
def main():
'''
主函数,运行做市策略
'''
exchange.IO('simulate', True) #OKX现货模拟账户
exchange.IO("trade_super_margin")
current_time = 0
target_amount = 1 # 目标交易量
price_range = 5 # 价格范围
min_price_step = 1 # 最小价格间隔
trade_amount = 0.01 # 每次交易量
exchange_mid = MidClass(exchange) # 初始化交易所中间层
Log(exchange_mid.refresh_data()) # 刷新数据
market_maker = MarketMaker(exchange_mid) # 初始化做市策略
# 修正:初始化trade_dict
trade_dict = None
while market_maker.done_amount['pan_kou'] < target_amount: # 循环直到完成目标交易量
Log(market_maker.traded_pairs['pan_kou'])
market_maker.check_order_status(current_time) # 检查订单状态
Sleep(1000) # 等待1秒
market_maker.refresh_data() # 刷新数据
if len(market_maker.traded_pairs['pan_kou']) < 1: # 价格移动,盘口挂单撤销,等待至所有挂单完毕,制定新的挂单字典
Log('2盘口交易对数量小于1')
trade_dict = market_maker.make_pankou_dict(price_range, min_price_step, trade_amount) # 生成盘口挂单字典
Log('新交易字典', trade_dict)
# 修正:确保trade_dict存在且不为None
if trade_dict and trade_dict.get('do_trade', False):
market_maker.make_trade_by_dict(trade_dict) # 执行交易
Log('盘口做市数量:', market_maker.done_amount['pan_kou']) # 记录交易量
market_maker.plot_pending()
market_maker.update_status()
current_time += 1
Log(market_maker.position_amount, market_maker.can_buy_amount) # 记录持仓量和可买数量
Log('现存订单:', exchange.GetOrders()) # 记录现存订单
def onexit():
Log("执行扫尾函数")
_G("init_balance", None)
_G("init_stocks", None)
_G("init_equity", None)