Zeitbereich Power Trading-Strategie


Erstellungsdatum: 2023-11-23 15:32:00 zuletzt geändert: 2023-11-23 15:32:00
Kopie: 0 Klicks: 603
1
konzentrieren Sie sich auf
1617
Anhänger

Zeitbereich Power Trading-Strategie

Überblick

Die Zeitfenster-Strategie ist eine Strategie, die die Kursentwicklung von Aktien in den verschiedenen Zeitfenstern eines Tages nutzt. Sie ermittelt die optimale Zeit für einen Leerverkauf innerhalb eines Zeitraums von 48 12 Stunden.

Strategieprinzip

Die Kernlogik der Strategie ist, dass die Aktien in verschiedenen Zeiträumen des Tages, deren Preisbewegungen sind in der Regel regelmäßig. Die Strategie durch die Einrichtung von 48-und-halb-Stunden-Zeitraum, und in jedem Zeitrahmen zu entscheiden, zu tun, frei oder keine drei Optionen. Wenn die Zeit in einem Bereich, wenn die Einrichtung zu viel, wird die Position zu tun geöffnet; wenn die Einrichtung zu leeren, wird die Position zu leeren geöffnet.

Wenn beispielsweise zwischen 6:30 und 7 Uhr als Überschuss eingestellt wird, wird die Strategie um 6:30 Uhr als Überschuss eingestellt; wenn zwischen 7 und 7:30 Uhr als Aufschuss eingestellt wird, wird die Strategie vor 7 Uhr die vorherigen Überschüsse ausgleichen und dann um 7 Uhr als Aufschuss eingestellt.

Der Vorteil dieser Strategie besteht darin, dass die Preisänderungsregeln der Aktien innerhalb eines Tages erfasst werden können. Das Risiko besteht darin, dass sich die Preisänderungsregeln im Laufe der Zeit ändern können, was die Strategie zum Scheitern bringt.

Analyse der Stärken

Der größte Vorteil dieser Strategie besteht darin, dass sie die Eigenschaften von “Preise sind richtig” nutzt, d. h. dass die Preise in verschiedenen Zeitabschnitten unterschiedliche Mittelwerte und Unterschiede aufweisen. Dies ermöglicht es der Strategie, in Zeiten mit hoher Volatilität eine Range-Handelsstrategie zu verwenden, in Zeiten mit geringer Volatilität eine Trendstrategie zu verwenden und flexibel auf Marktveränderungen zu reagieren.

Ein weiterer Vorteil ist die Flexibilität bei der Parameter-Einstellung. Die optimale Parameterkombination kann nach den Eigenschaften der verschiedenen Aktien ausgewählt werden, um das Risiko einer teilweisen Unsicherheit abzudecken.

Risikoanalyse

Das Hauptrisiko liegt in der hypothetischen Instabilität. Wenn sich die Kursregeln innerhalb eines Tages ändern, werden die Gewinnprognosen der Strategie beeinträchtigt. Diese Veränderungen können aus den Aktienfundamentalen oder aus einem Black Swan-Ereignis in der Umgebung resultieren.

Darüber hinaus kann zu häufige Transaktionen zu Risiken bei den Transaktionsgebühren führen. Wenn die Transaktionsgebühren nicht ausreichend unterstützt werden, kann die Anhäufung der Transaktionsgebühren auch die endgültigen Erträge beeinträchtigen.

Optimierungsrichtung

Es kann in Erwägung gezogen werden, ein maschinelles Lernmodell einzuführen, um die Parameter dynamisch anzupassen. Zum Beispiel kann ein LSTM-Modell trainiert werden, um den Aktienpreis für die nächste Zeitspanne vorherzusagen und die Parameter für die zusätzliche Leerstellung entsprechend anzupassen.

Alternativ kann man versuchen, Fundamentaldaten in Verbindung mit Aktien zu kombinieren, um zu beurteilen, ob es zu einer Veränderung der Preisänderungsregeln kommen könnte, um den Zeitpunkt für den Start der Strategie zu bestimmen.

Zusammenfassen

Die Zeitzone-Strength-Betriebs-Strategie analysiert die Gesetze der Preisänderungen der Aktien innerhalb eines Tages und ergreift optimale Maßnahmen in verschiedenen Zeitzonen, um Alpha zu erhalten. Dies ist eine effiziente algorithmische Handelsstrategie mit flexiblen, risikokontrollierbaren Parametern. Die zukünftige Optimierungsrichtung kann mit der Einführung von maschinellen Lernmodellen oder mit grundlegenden Urteilen in Verbindung gebracht werden, um die Strategie mit einem größeren Gewinnraum und einer stärkeren Risikobereitschaft zu versorgen.

Strategiequellcode
/*backtest
start: 2023-10-23 00:00:00
end: 2023-11-22 00:00:00
period: 1h
basePeriod: 15m
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
*/

// This source code is subject to the terms of the Mozilla Public License 2.0 at https://mozilla.org/MPL/2.0/

//@version=4
strategy("Timeframe Time of Day Buying and Selling Strategy", overlay=true)

frommonth = input(defval = 6, minval = 01, maxval = 12, title = "From Month")
fromday = input(defval = 14, minval = 01, maxval = 31, title = "From day")
fromyear = input(defval = 2021, minval = 1900, maxval = 2100, title = "From Year")

tomonth = input(defval = 12, minval = 01, maxval = 12, title = "To Month")
today = input(defval = 31, minval = 01, maxval = 31, title = "To day")
toyear = input(defval = 2100, minval = 1900, maxval = 2100, title = "To Year")

timeframes = array.new_string(48, '')
timeframes_options = array.new_string(49, 'None')

array.set(timeframes,0,'2330-0000')
array.set(timeframes_options,0, input(defval='None', options=['Long','Short','None'], title='0000-0030'))
array.set(timeframes,1,'0000-0030')
array.set(timeframes_options,1, input(defval='Long', options=['Long','Short','None'], title='0030-0100'))
array.set(timeframes,2,'0030-0100')
array.set(timeframes_options,2, input(defval='Long', options=['Long','Short','None'], title='0100-0130'))
array.set(timeframes,3,'0100-0130')
array.set(timeframes_options,3, input(defval='Long', options=['Long','Short','None'], title='0130-0200'))
array.set(timeframes,4,'0130-0200')
array.set(timeframes_options,4, input(defval='Long', options=['Long','Short','None'], title='0200-0230'))
array.set(timeframes,5,'0200-0230')
array.set(timeframes_options,5, input(defval='None', options=['Long','Short','None'], title='0230-0300'))
array.set(timeframes,6,'0230-0300')
array.set(timeframes_options,6, input(defval='None', options=['Long','Short','None'], title='0300-0330'))
array.set(timeframes,7,'0300-0330')
array.set(timeframes_options,7, input(defval='None', options=['Long','Short','None'], title='0330-0400'))
array.set(timeframes,8,'0330-0400')
array.set(timeframes_options,8, input(defval='None', options=['Long','Short','None'], title='0400-0430'))
array.set(timeframes,9,'0400-0430')
array.set(timeframes_options,9, input(defval='None', options=['Long','Short','None'], title='0430-0500'))
array.set(timeframes,10,'0430-0500')
array.set(timeframes_options,10, input(defval='None', options=['Long','Short','None'], title='0500-0530'))
array.set(timeframes,11,'0500-0530')
array.set(timeframes_options,11, input(defval='None', options=['Long','Short','None'], title='0530-0600'))
array.set(timeframes,12,'0530-0600')
array.set(timeframes_options,12, input(defval='None', options=['Long','Short','None'], title='0600-0630'))
array.set(timeframes,13,'0600-0630')
array.set(timeframes_options,13, input(defval='None', options=['Long','Short','None'], title='0630-0700'))
array.set(timeframes,14,'0630-0700')
array.set(timeframes_options,14, input(defval='None', options=['Long','Short','None'], title='0700-0730'))
array.set(timeframes,15,'0700-0730')
array.set(timeframes_options,15, input(defval='None', options=['Long','Short','None'], title='0730-0800'))
array.set(timeframes,16,'0730-0800')
array.set(timeframes_options,16, input(defval='None', options=['Long','Short','None'], title='0800-0830'))
array.set(timeframes,17,'0800-0830')
array.set(timeframes_options,17, input(defval='None', options=['Long','Short','None'], title='0830-0900'))
array.set(timeframes,18,'0830-0900')
array.set(timeframes_options,18, input(defval='None', options=['Long','Short','None'], title='0900-0930'))
array.set(timeframes,19,'0900-0930')
array.set(timeframes_options,19, input(defval='None', options=['Long','Short','None'], title='0930-1000'))
array.set(timeframes,20,'0930-1000')
array.set(timeframes_options,20, input(defval='None', options=['Long','Short','None'], title='1000-1030'))
array.set(timeframes,21,'1000-1030')
array.set(timeframes_options,21, input(defval='None', options=['Long','Short','None'], title='1030-1100'))
array.set(timeframes,22,'1030-1100')
array.set(timeframes_options,22, input(defval='None', options=['Long','Short','None'], title='1100-1130'))
array.set(timeframes,23,'1100-1130')
array.set(timeframes_options,23, input(defval='None', options=['Long','Short','None'], title='1130-1200'))
array.set(timeframes,24,'1130-1200')
array.set(timeframes_options,24, input(defval='None', options=['Long','Short','None'], title='1200-1230'))
array.set(timeframes,25,'1200-1230')
array.set(timeframes_options,25, input(defval='None', options=['Long','Short','None'], title='1230-1300'))
array.set(timeframes,26,'1230-1300')
array.set(timeframes_options,26, input(defval='None', options=['Long','Short','None'], title='1300-1330'))
array.set(timeframes,27,'1300-1330')
array.set(timeframes_options,27, input(defval='None', options=['Long','Short','None'], title='1330-1400'))
array.set(timeframes,28,'1330-1400')
array.set(timeframes_options,28, input(defval='None', options=['Long','Short','None'], title='1400-1430'))
array.set(timeframes,29,'1400-1430')
array.set(timeframes_options,29, input(defval='None', options=['Long','Short','None'], title='1430-1500'))
array.set(timeframes,30,'1430-1500')
array.set(timeframes_options,30, input(defval='None', options=['Long','Short','None'], title='1500-1530'))
array.set(timeframes,31,'1500-1530')
array.set(timeframes_options,31, input(defval='None', options=['Long','Short','None'], title='1530-1600'))
array.set(timeframes,32,'1530-1600')
array.set(timeframes_options,32, input(defval='None', options=['Long','Short','None'], title='1600-1630'))
array.set(timeframes,33,'1600-1630')
array.set(timeframes_options,33, input(defval='None', options=['Long','Short','None'], title='1630-1700'))
array.set(timeframes,34,'1630-1700')
array.set(timeframes_options,34, input(defval='None', options=['Long','Short','None'], title='1700-1730'))
array.set(timeframes,35,'1700-1730')
array.set(timeframes_options,35, input(defval='None', options=['Long','Short','None'], title='1730-1800'))
array.set(timeframes,36,'1730-1800')
array.set(timeframes_options,36, input(defval='None', options=['Long','Short','None'], title='1800-1830'))
array.set(timeframes,37,'1800-1830')
array.set(timeframes_options,37, input(defval='None', options=['Long','Short','None'], title='1830-1900'))
array.set(timeframes,38,'1830-1900')
array.set(timeframes_options,38, input(defval='None', options=['Long','Short','None'], title='1900-0930'))
array.set(timeframes,39,'1900-0930')
array.set(timeframes_options,39, input(defval='None', options=['Long','Short','None'], title='1930-2000'))
array.set(timeframes,40,'1930-2000')
array.set(timeframes_options,40, input(defval='None', options=['Long','Short','None'], title='2000-2030'))
array.set(timeframes,41,'2000-2030')
array.set(timeframes_options,41, input(defval='None', options=['Long','Short','None'], title='2030-2100'))
array.set(timeframes,42,'2030-2100')
array.set(timeframes_options,42, input(defval='None', options=['Long','Short','None'], title='2100-2130'))
array.set(timeframes,43,'2100-2130')
array.set(timeframes_options,43, input(defval='None', options=['Long','Short','None'], title='2130-2200'))
array.set(timeframes,44,'2130-2200')
array.set(timeframes_options,44, input(defval='None', options=['Long','Short','None'], title='2200-2230'))
array.set(timeframes,45,'2200-2230')
array.set(timeframes_options,45, input(defval='None', options=['Long','Short','None'], title='2230-2300'))
array.set(timeframes,46,'2230-2300')
array.set(timeframes_options,46, input(defval='None', options=['Long','Short','None'], title='2300-2330'))
array.set(timeframes,47,'2300-2330')
array.set(timeframes_options,47, input(defval='None', options=['Long','Short','None'], title='2330-0000'))


string_hour = hour<10?'0'+tostring(hour):tostring(hour)
string_minute = minute<10?'0'+tostring(minute):tostring(minute)
current_time = string_hour+string_minute


f_strLeft(_str, _n) =>
    string[] _chars = str.split(_str, "")
    int _len = array.size(_chars)
    int _end = min(_len, max(0, _n))
    string[] _substr = array.new_string(0)
    if _end <= _len
        _substr := array.slice(_chars, 0, _end)
    string _return = array.join(_substr, "")

f_strRight(_str, _n) =>
    string[] _chars = str.split(_str, "")
    int _len = array.size(_chars)
    int _beg = max(0, _len - _n)
    string[] _substr = array.new_string(0)
    if _beg < _len
        _substr := array.slice(_chars, _beg, _len)
    string _return = array.join(_substr, "")


for i = 0 to array.size(timeframes) - 1
    start_time = f_strLeft(array.get(timeframes, i), 4)
    end_time = f_strRight(array.get(timeframes, i), 4)
    
    if current_time == end_time and array.get(timeframes_options, i)!='None' and array.get(timeframes_options, i) != array.get(timeframes_options, i==47?0:i+1) and timestamp(toyear, tomonth, today, 00, 00)
        strategy.close_all()

    if current_time == start_time and array.get(timeframes_options, i)!='None' and array.get(timeframes_options, i) != array.get(timeframes_options, i==0?47:i-1)
        if array.get(timeframes_options, i) == 'Long'
            strategy.entry("Long", strategy.long, when=(time > timestamp(fromyear, frommonth, fromday, 00, 00) and time < timestamp(toyear, tomonth, today, 00, 00)))
        else if array.get(timeframes_options, i) == 'Short'
            strategy.entry("Short", strategy.short, when=(time > timestamp(fromyear, frommonth, fromday, 00, 00) and time < timestamp(toyear, tomonth, today, 00, 00)))