
La stratégie utilise principalement le principe de la croix de la courbe, combiné à un signal de retour de l’indicateur RSI, et un algorithme de suivi bidirectionnel personnalisé pour réaliser des transactions de suivi de la croix de la courbe. La stratégie suit deux périodes différentes de suivi de la croix de la courbe, une courbe rapide suivant une tendance à court terme, l’autre courbe lente suivant une tendance à long terme. Lorsque la courbe rapide traverse la courbe lente vers le haut, indiquant une tendance à court terme vers le haut, vous pouvez acheter; lorsque la courbe rapide traverse la courbe lente vers le bas, indiquant la fin de la tendance à court terme, vous devriez être en position.
Calculer la moyenne VWAP de deux groupes de paramètres différents, représentant respectivement une tendance à long terme et une tendance à court terme
Prendre la moyenne des deux ensembles de courbes et de courbes de référence comme moyenne lente et moyenne rapide.
Calcul de l’indicateur de la ceinture de Brin pour déterminer la convergence et la rupture
Calcul de l’indicateur TSV pour déterminer l’énergie du volume des transactions
Calculer le RSI pour détecter un surachat ou une survente
Conditions d’entrée :
Conditions de jeu:
L’utilisation d’un système bi-linéaire permet de capturer simultanément les tendances à court et à long terme.
L’indicateur RSI évite de s’acheter dans une zone de survente et de vendre dans une zone de survente
L’indicateur TSV assure un volume suffisant pour soutenir la tendance
Les points de rupture cruciaux à l’aide de la ceinture de Brin
Une combinaison d’indicateurs permettant de filtrer efficacement les fausses percées
Les systèmes homogènes sont sujets à des erreurs et nécessitent des filtres auxiliaires.
Les paramètres de l’indicateur RSI doivent être optimisés, sinon ils risquent de manquer un point d’achat ou de vente
Le TSV est également sensible aux paramètres et doit être testé avec soin.
La rupture de Brin avec la voie ferrée pourrait être une fausse rupture et doit être vérifiée
Composé de plusieurs indicateurs, les paramètres sont difficiles à optimiser et faciles à sur-optimiser
Des données de formation et de test insuffisantes peuvent entraîner une adéquation de la courbe
Tester plus de paramètres de cycle pour trouver la meilleure combinaison de paramètres
Essayez d’utiliser d’autres indicateurs comme le MACD, le KD ou le RSI.
Optimisation des paramètres pour tirer le meilleur parti de l’analyse de marche en avant
Augmentation des stratégies de stop-loss pour contrôler les pertes individuelles
Considérer l’ajout d’un modèle d’apprentissage automatique pour aider à la détection des signaux
Ne vous fiez pas à une seule combinaison de paramètres pour adapter les paramètres à différents marchés
Cette stratégie utilise un système bi-homogène pour capturer les tendances à court terme, tout en utilisant des signaux de filtrage de plusieurs indicateurs tels que le RSI, le TSV et les bandes de Brent. L’avantage de la stratégie est qu’il est possible de capturer des vagues de hausse à long terme.
/*backtest
start: 2022-10-23 00:00:00
end: 2023-10-29 00:00:00
period: 1d
basePeriod: 1h
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
*/
// @version=4
// Credits
// "Vwap with period" code which used in this strategy to calculate the leadLine was written by "neolao" active on https://tr.tradingview.com/u/neolao/
// "TSV" code which used in this strategy was written by "liw0" active on https://www.tradingview.com/u/liw0. The code is corrected by "vitelot" December 2018.
// "Vidya" code which used in this strategy was written by "everget" active on https://tr.tradingview.com/u/everget/
strategy("HYE Combo Market [Strategy] (Vwap Mean Reversion + Trend Hunter)", overlay = true, initial_capital = 1000, default_qty_value = 100, default_qty_type = strategy.percent_of_equity, commission_value = 0.025)
//Strategy inputs
source = input(title = "Source", defval = close, group = "Mean Reversion Strategy Inputs")
smallcumulativePeriod = input(title = "Small VWAP", defval = 8, group = "Mean Reversion Strategy Inputs")
bigcumulativePeriod = input(title = "Big VWAP", defval = 10, group = "Mean Reversion Strategy Inputs")
meancumulativePeriod = input(title = "Mean VWAP", defval = 50, group = "Mean Reversion Strategy Inputs")
percentBelowToBuy = input(title = "Percent below to buy %", defval = 2, group = "Mean Reversion Strategy Inputs")
rsiPeriod = input(title = "Rsi Period", defval = 2, group = "Mean Reversion Strategy Inputs")
rsiEmaPeriod = input(title = "Rsi Ema Period", defval = 5, group = "Mean Reversion Strategy Inputs")
rsiLevelforBuy = input(title = "Maximum Rsi Level for Buy", defval = 30, group = "Mean Reversion Strategy Inputs")
slowtenkansenPeriod = input(9, minval=1, title="Slow Tenkan Sen VWAP Line Length", group = "Trend Hunter Strategy Inputs")
slowkijunsenPeriod = input(13, minval=1, title="Slow Kijun Sen VWAP Line Length", group = "Trend Hunter Strategy Inputs")
fasttenkansenPeriod = input(3, minval=1, title="Fast Tenkan Sen VWAP Line Length", group = "Trend Hunter Strategy Inputs")
fastkijunsenPeriod = input(7, minval=1, title="Fast Kijun Sen VWAP Line Length", group = "Trend Hunter Strategy Inputs")
BBlength = input(20, minval=1, title= "Bollinger Band Length", group = "Trend Hunter Strategy Inputs")
BBmult = input(2.0, minval=0.001, maxval=50, title="Bollinger Band StdDev", group = "Trend Hunter Strategy Inputs")
tsvlength = input(20, minval=1, title="TSV Length", group = "Trend Hunter Strategy Inputs")
tsvemaperiod = input(7, minval=1, title="TSV Ema Length", group = "Trend Hunter Strategy Inputs")
length = input(title="Vidya Length", type=input.integer, defval=20, group = "Trend Hunter Strategy Inputs")
src = input(title="Vidya Source", type=input.source, defval= hl2 , group = "Trend Hunter Strategy Inputs")
// Vidya Calculation
getCMO(src, length) =>
mom = change(src)
upSum = sum(max(mom, 0), length)
downSum = sum(-min(mom, 0), length)
out = (upSum - downSum) / (upSum + downSum)
out
cmo = abs(getCMO(src, length))
alpha = 2 / (length + 1)
vidya = 0.0
vidya := src * alpha * cmo + nz(vidya[1]) * (1 - alpha * cmo)
// Make input options that configure backtest date range
startDate = input(title="Start Date", type=input.integer,
defval=1, minval=1, maxval=31, group = "Strategy Date Range")
startMonth = input(title="Start Month", type=input.integer,
defval=1, minval=1, maxval=12, group = "Strategy Date Range")
startYear = input(title="Start Year", type=input.integer,
defval=2000, minval=1800, maxval=2100, group = "Strategy Date Range")
endDate = input(title="End Date", type=input.integer,
defval=31, minval=1, maxval=31, group = "Strategy Date Range")
endMonth = input(title="End Month", type=input.integer,
defval=12, minval=1, maxval=12, group = "Strategy Date Range")
endYear = input(title="End Year", type=input.integer,
defval=2021, minval=1800, maxval=2100, group = "Strategy Date Range")
inDateRange = true
// Mean Reversion Strategy Calculation
typicalPriceS = (high + low + close) / 3
typicalPriceVolumeS = typicalPriceS * volume
cumulativeTypicalPriceVolumeS = sum(typicalPriceVolumeS, smallcumulativePeriod)
cumulativeVolumeS = sum(volume, smallcumulativePeriod)
smallvwapValue = cumulativeTypicalPriceVolumeS / cumulativeVolumeS
typicalPriceB = (high + low + close) / 3
typicalPriceVolumeB = typicalPriceB * volume
cumulativeTypicalPriceVolumeB = sum(typicalPriceVolumeB, bigcumulativePeriod)
cumulativeVolumeB = sum(volume, bigcumulativePeriod)
bigvwapValue = cumulativeTypicalPriceVolumeB / cumulativeVolumeB
typicalPriceM = (high + low + close) / 3
typicalPriceVolumeM = typicalPriceM * volume
cumulativeTypicalPriceVolumeM = sum(typicalPriceVolumeM, meancumulativePeriod)
cumulativeVolumeM = sum(volume, meancumulativePeriod)
meanvwapValue = cumulativeTypicalPriceVolumeM / cumulativeVolumeM
rsiValue = rsi(source, rsiPeriod)
rsiEMA = ema(rsiValue, rsiEmaPeriod)
buyMA = ((100 - percentBelowToBuy) / 100) * bigvwapValue[0]
inTrade = strategy.position_size > 0
notInTrade = strategy.position_size <= 0
if(crossunder(smallvwapValue, buyMA) and rsiEMA < rsiLevelforBuy and close < meanvwapValue and inDateRange and notInTrade)
strategy.entry("BUY-M", strategy.long)
if(close > meanvwapValue or not inDateRange)
strategy.close("BUY-M")
// Trend Hunter Strategy Calculation
// Slow Tenkan Sen Calculation
typicalPriceTS = (high + low + close) / 3
typicalPriceVolumeTS = typicalPriceTS * volume
cumulativeTypicalPriceVolumeTS = sum(typicalPriceVolumeTS, slowtenkansenPeriod)
cumulativeVolumeTS = sum(volume, slowtenkansenPeriod)
slowtenkansenvwapValue = cumulativeTypicalPriceVolumeTS / cumulativeVolumeTS
// Slow Kijun Sen Calculation
typicalPriceKS = (high + low + close) / 3
typicalPriceVolumeKS = typicalPriceKS * volume
cumulativeTypicalPriceVolumeKS = sum(typicalPriceVolumeKS, slowkijunsenPeriod)
cumulativeVolumeKS = sum(volume, slowkijunsenPeriod)
slowkijunsenvwapValue = cumulativeTypicalPriceVolumeKS / cumulativeVolumeKS
// Fast Tenkan Sen Calculation
typicalPriceTF = (high + low + close) / 3
typicalPriceVolumeTF = typicalPriceTF * volume
cumulativeTypicalPriceVolumeTF = sum(typicalPriceVolumeTF, fasttenkansenPeriod)
cumulativeVolumeTF = sum(volume, fasttenkansenPeriod)
fasttenkansenvwapValue = cumulativeTypicalPriceVolumeTF / cumulativeVolumeTF
// Fast Kijun Sen Calculation
typicalPriceKF = (high + low + close) / 3
typicalPriceVolumeKF = typicalPriceKS * volume
cumulativeTypicalPriceVolumeKF = sum(typicalPriceVolumeKF, fastkijunsenPeriod)
cumulativeVolumeKF = sum(volume, fastkijunsenPeriod)
fastkijunsenvwapValue = cumulativeTypicalPriceVolumeKF / cumulativeVolumeKF
// Slow LeadLine Calculation
lowesttenkansen_s = lowest(slowtenkansenvwapValue, slowtenkansenPeriod)
highesttenkansen_s = highest(slowtenkansenvwapValue, slowtenkansenPeriod)
lowestkijunsen_s = lowest(slowkijunsenvwapValue, slowkijunsenPeriod)
highestkijunsen_s = highest(slowkijunsenvwapValue, slowkijunsenPeriod)
slowtenkansen = avg(lowesttenkansen_s, highesttenkansen_s)
slowkijunsen = avg(lowestkijunsen_s, highestkijunsen_s)
slowleadLine = avg(slowtenkansen, slowkijunsen)
// Fast LeadLine Calculation
lowesttenkansen_f = lowest(fasttenkansenvwapValue, fasttenkansenPeriod)
highesttenkansen_f = highest(fasttenkansenvwapValue, fasttenkansenPeriod)
lowestkijunsen_f = lowest(fastkijunsenvwapValue, fastkijunsenPeriod)
highestkijunsen_f = highest(fastkijunsenvwapValue, fastkijunsenPeriod)
fasttenkansen = avg(lowesttenkansen_f, highesttenkansen_f)
fastkijunsen = avg(lowestkijunsen_f, highestkijunsen_f)
fastleadLine = avg(fasttenkansen, fastkijunsen)
// BBleadLine Calculation
BBleadLine = avg(fastleadLine, slowleadLine)
// Bollinger Band Calculation
basis = sma(BBleadLine, BBlength)
dev = BBmult * stdev(BBleadLine, BBlength)
upper = basis + dev
lower = basis - dev
// TSV Calculation
tsv = sum(close>close[1]?volume*(close-close[1]):close<close[1]?volume*(close-close[1]):0,tsvlength)
tsvema = ema(tsv, tsvemaperiod)
// Rules for Entry & Exit
if(fastleadLine > fastleadLine[1] and slowleadLine > slowleadLine[1] and tsv > 0 and tsv > tsvema and close > upper and close > vidya and inDateRange and notInTrade)
strategy.entry("BUY-T", strategy.long)
if((fastleadLine < fastleadLine[1] and slowleadLine < slowleadLine[1]) or not inDateRange)
strategy.close("BUY-T")
// Plots
plot(meanvwapValue, title="MEAN VWAP", linewidth=2, color=color.yellow)
//plot(vidya, title="VIDYA", linewidth=2, color=color.green)
//colorsettingS = input(title="Solid Color Slow Leadline", defval=false, type=input.bool)
//plot(slowleadLine, title = "Slow LeadLine", color = colorsettingS ? color.aqua : slowleadLine > slowleadLine[1] ? color.green : color.red, linewidth=3)
//colorsettingF = input(title="Solid Color Fast Leadline", defval=false, type=input.bool)
//plot(fastleadLine, title = "Fast LeadLine", color = colorsettingF ? color.orange : fastleadLine > fastleadLine[1] ? color.green : color.red, linewidth=3)
//p1 = plot(upper, "Upper BB", color=#2962FF)
//p2 = plot(lower, "Lower BB", color=#2962FF)
//fill(p1, p2, title = "Background", color=color.blue)
//plot(smallvwapValue, color=#13C425, linewidth=2)
//plot(bigvwapValue, color=#CA1435, linewidth=2)