Stratégie de trading de retour à la moyenne mobile


Date de création: 2023-10-26 15:38:14 Dernière modification: 2023-10-26 15:38:14
Copier: 0 Nombre de clics: 628
1
Suivre
1617
Abonnés

Stratégie de trading de retour à la moyenne mobile

Aperçu

Une stratégie de négociation de régression de la moyenne est une stratégie de négociation basée sur le degré de déviation du prix de la moyenne. Cette stratégie utilise les caractéristiques d’un écart de prix à court terme par rapport à la moyenne à long terme, pour établir des positions lorsque le prix est significativement inférieur ou supérieur à la moyenne et pour éliminer le marge de négociation lorsque le prix revient à la moyenne.

Principe de stratégie

La stratégie commence par calculer une moyenne mobile sur une période donnée, représentant une tendance à long terme des prix. Ensuite, le moment et la taille de la position sont déterminés en fonction de l’écart des prix par rapport à la moyenne mobile.

Lorsque le prix est inférieur à la moyenne mobile d’une certaine proportion, ce qui représente la déviation du prix de la tendance à long terme, alors selon une certaine proportion de la position de construire progressivement plusieurs ordres. Le plus le prix déviation, la position plus grande établie.

De même, lorsque le prix est supérieur à la moyenne mobile d’une certaine proportion, un ordre blanc est établi. Lorsque le prix est en baisse et revient à la moyenne mobile, un plafond proportionnel est établi.

Analyse des avantages

  1. Utilisez la capacité d’identification des tendances de la ligne moyenne pour suivre les tendances à long terme de l’équilibre des cours d’actions et saisir la direction des principales tendances.

  2. La mise en place de positions par lots permet de réduire les coûts de construction et d’obtenir des prix avantageux.

  3. L’arrêt par étapes, avec différents degrés de retour à la ligne d’équilibre, offre différentes possibilités d’arrêt et réduit le risque.

  4. La maîtrise de position est basée sur des parts fixes, afin d’éviter des pertes individuelles excessives.

  5. Les paramètres sont flexibles et peuvent être ajustés en fonction de la variété, de la période de la moyenne mobile ou du ratio de position.

Analyse des risques

  1. Il est possible d’effectuer des arrêts fréquents en cas de fluctuation des prix. Il est possible d’assouplir les arrêts de manière appropriée ou d’appliquer d’autres conditions de filtrage.

  2. Les actions fortes peuvent franchir directement la ligne moyenne et continuer à monter ou à descendre, sans pouvoir revenir à la ligne moyenne. Les indicateurs de tendance peuvent être combinés pour déterminer la tendance forte et réduire la position.

  3. Une mauvaise configuration des paramètres peut entraîner une prise de position ou un arrêt trop radical. Les paramètres doivent être testés avec prudence et ajustés en fonction du marché.

  4. La fréquence des transactions peut entraîner des frais de transaction plus élevés, en tenant compte des paramètres d’optimisation des facteurs de coûts.

Direction d’optimisation

  1. Optimisation des cycles mobiles de la moyenne pour adapter les caractéristiques des différentes variétés.

  2. Optimiser le ratio de position pour équilibrer le risque et le bénéfice.

  3. Ajouter des filtres sur d’autres indicateurs techniques pour éviter les transactions inutiles.

  4. Le ratio de position est ajusté en fonction de la volatilité du marché.

  5. L’adhésion à un mécanisme d’amplification de l’amortisseur réduit les risques et augmente les rendements.

Résumer

La stratégie de retour à la moyenne exploite les caractéristiques de retour équilibré des actions, prend position lorsque le prix s’écarte de la moyenne mobile et s’arrête lorsque le prix revient. Elle permet de saisir efficacement la tendance à long terme des actions.

Code source de la stratégie
/*backtest
start: 2022-10-19 00:00:00
end: 2023-10-25 00:00:00
period: 1d
basePeriod: 1h
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
*/

//@version=4
strategy("YJ Mean Reversion", overlay=true)
//Was designed firstly to work on an index like the S&P 500 , which over time tends to go up in value. 
//Avoid trading too frequently (e.g. Daily, Weekly), to avoid getting eaten by fees. 
//If you change the underlying asset, or time frame, tweaking the moving average may be necessary. 
//Can work with a starting capital of just $1000, optimise the settings as necessary. 
//Accepts floating point values for the amount of units to purchase (e.g. Bitcoin ). 
//If price of units exceeds available capital, script will cancel the buy. 
//Adjusted the input parameters to be more intuitive.

//input variables
movingAverage = input(title="Moving Average (bars)", type=input.integer, defval=28, minval=1, maxval=1000)
//riskPercentage = input(title="Amount to Risk (%)", type=input.integer, defval=1, minval=1, maxval=50)
deviation = input(title="Deviation Increment (%)", type=input.float, defval=5, minval=0.01, maxval=100) / 100
unitsLevel1 = input(title="Level 1 (units)", type=input.float, defval=1, minval=0.0001, maxval=10000)
unitsLevel2 = input(title="Level 2 (units)", type=input.float, defval=2, minval=0.0001, maxval=10000)
unitsLevel3 = input(title="Level 3 (units)", type=input.float, defval=4, minval=0.0001, maxval=10000)
unitsLevel4 = input(title="Level 4 (units)", type=input.float, defval=8, minval=0.0001, maxval=10000)
unitsLevel5 = input(title="Level 5 (units)", type=input.float, defval=16, minval=0.0001, maxval=10000)

//moving average and ma slope (use on weekly chart)
ma = sma(close, movingAverage)
//sl = ma > ma[4]

//units to buy
//amount = riskPercentage / 100 * (strategy.initial_capital + strategy.netprofit)
//units = floor(amount / close)

//mode 1
//strategy.order("buy", true, 1, when = (close < 0.95 * ma) and (strategy.position_size < 10))
//strategy.order("sell", false, strategy.position_size, when = (close > 1.05 * ma) and (strategy.position_size > 0))

//mode 2
//strategy.order("buy", true, 1, when = close < 0.8 * ma)
//strategy.order("sell", false, strategy.position_size, when = (close > 310) and (strategy.position_size > 0))

//mode 3
//strategy.order("buy", true, 1, when = (close < 0.95 * ma) and (close > 0.9 * ma))
//strategy.order("buy", true, 2, when = (close < 0.9 * ma) and (close > 0.85 * ma))
//strategy.order("buy", true, 4, when = (close < 0.85 * ma) and (close > 0.8 * ma))
//strategy.order("buy", true, 8, when = (close < 0.8 * ma) and (close > 0.75 * ma))
//strategy.order("buy", true, 16, when = (close < 0.75 * ma))
//strategy.order("sell", false, strategy.position_size, when = (close > 310) and (strategy.position_size > 0))

//mode 4
//strategy.order("buy", true, 1, when = (close < 0.98 * ma) and (close > 0.96 * ma) and (sl))
//strategy.order("buy", true, 2, when = (close < 0.96 * ma) and (close > 0.94 * ma) and (sl))
//strategy.order("buy", true, 4, when = (close < 0.94 * ma) and (close > 0.92 * ma) and (sl))
//strategy.order("buy", true, 8, when = (close < 0.92 * ma) and (close > 0.90 * ma) and (sl))
//strategy.order("buy", true, 16, when = (close < 0.90 * ma) and (sl))
//strategy.order("sell", false, strategy.position_size, when = (close > 310) and (strategy.position_size > 0))

//mode 5
//strategy.order("buy", true, 1, when = (close < 0.95 * ma) and (close > 0.9 * ma))
//strategy.order("buy", true, 2, when = (close < 0.9 * ma) and (close > 0.85 * ma))
//strategy.order("buy", true, 4, when = (close < 0.85 * ma) and (close > 0.8 * ma))
//strategy.order("buy", true, 8, when = (close < 0.8 * ma) and (close > 0.75 * ma))
//strategy.order("buy", true, 16, when = (close < 0.75 * ma))

//strategy.order("sell", false, 1, when = (close > 1.05 * ma) and (close < 1.1 * ma) and (strategy.position_size > 0))
//strategy.order("sell", false, 2, when = (close > 1.1 * ma) and (close < 1.15 * ma) and (strategy.position_size > 0))
//strategy.order("sell", false, 4, when = (close > 1.15 * ma) and (close < 1.2 * ma) and (strategy.position_size > 0))
//strategy.order("sell", false, 8, when = (close > 1.2 * ma) and (close < 1.25 * ma) and (strategy.position_size > 0))
//strategy.order("sell", false, 16, when = (close > 1.25 * ma) and (close < 1.3 * ma) and (strategy.position_size > 0))

//mode 6
//strategy.order("B1", true, unitsLevel1 * units, when = (close < 0.95 * ma) and (close > 0.9 * ma))
//strategy.order("B2", true, unitsLevel2 * units, when = (close < 0.9 * ma) and (close > 0.85 * ma))
//strategy.order("B3", true, unitsLevel3 * units, when = (close < 0.85 * ma) and (close > 0.8 * ma))
//strategy.order("B4", true, unitsLevel4 * units, when = (close < 0.8 * ma) and (close > 0.75 * ma))
//strategy.order("B5", true, unitsLevel5 * units, when = (close < 0.75 * ma))

//strategy.order("S1", false, unitsLevel1 * units, when = (close > 1.05 * ma) and (close < 1.1 * ma) and (strategy.position_size > 0))
//strategy.order("S2", false, unitsLevel2 * units, when = (close > 1.1 * ma) and (close < 1.15 * ma) and (strategy.position_size > 0))
//strategy.order("S3", false, unitsLevel3 * units, when = (close > 1.15 * ma) and (close < 1.2 * ma) and (strategy.position_size > 0))
//strategy.order("S4", false, unitsLevel4 * units, when = (close > 1.2 * ma) and (close < 1.25 * ma) and (strategy.position_size > 0))
//strategy.order("S5", false, unitsLevel5 * units, when = (close > 1.25 * ma) and (close < 1.3 * ma) and (strategy.position_size > 0))

//mode 7
//strategy.order("B1", true, units, when = (close < 0.95 * ma) and (close > 0.9 * ma))
//strategy.order("B2", true, units, when = (close < 0.9 * ma) and (close > 0.85 * ma))
//strategy.order("B3", true, units, when = (close < 0.85 * ma) and (close > 0.8 * ma))
//strategy.order("B4", true, units, when = (close < 0.8 * ma) and (close > 0.75 * ma))
//strategy.order("B5", true, units, when = (close < 0.75 * ma))

//strategy.order("S1", false, units, when = (close > 1.05 * ma) and (close < 1.1 * ma) and (strategy.position_size > 0))
//strategy.order("S2", false, units, when = (close > 1.1 * ma) and (close < 1.15 * ma) and (strategy.position_size > 0))
//strategy.order("S3", false, units, when = (close > 1.15 * ma) and (close < 1.2 * ma) and (strategy.position_size > 0))
//strategy.order("S4", false, units, when = (close > 1.2 * ma) and (close < 1.25 * ma) and (strategy.position_size > 0))
//strategy.order("S5", false, units, when = (close > 1.25 * ma) and (close < 1.3 * ma) and (strategy.position_size > 0))

//banding calculations
aH = 1.0 - deviation
aL = aH - deviation
bH = aL
bL = bH - deviation
cH = bL
cL = cH - deviation
dH = cL
dL = dH - deviation
eH = dL
strategy.initial_capital = 50000
//mode 8
strategy.order("B1", true, unitsLevel1, when = (close < aH * ma) and (close > aL * ma) and (unitsLevel1 * close < (strategy.initial_capital + strategy.netprofit)))
strategy.order("B2", true, unitsLevel2, when = (close < bH * ma) and (close > bL * ma) and (unitsLevel2 * close < (strategy.initial_capital + strategy.netprofit)))
strategy.order("B3", true, unitsLevel3, when = (close < cH * ma) and (close > cL * ma) and (unitsLevel3 * close < (strategy.initial_capital + strategy.netprofit)))
strategy.order("B4", true, unitsLevel4, when = (close < dH * ma) and (close > dL * ma) and (unitsLevel4 * close < (strategy.initial_capital + strategy.netprofit)))
strategy.order("B5", true, unitsLevel5, when = (close < eH * ma) and (unitsLevel5 * close < (strategy.initial_capital + strategy.netprofit)))

//banding calculations
fL = 1.0 + deviation
fH = fL + deviation
gL = fH
gH = gL + deviation
hL = gH
hH = hL + deviation
iL = hH
iH = iL + deviation
jL = iH

strategy.order("S1", false, unitsLevel1, when = (close > fL * ma) and (close < fH * ma) and (strategy.position_size > 0))
strategy.order("S2", false, unitsLevel2, when = (close > gL * ma) and (close < gH * ma) and (strategy.position_size > 0))
strategy.order("S3", false, unitsLevel3, when = (close > hL * ma) and (close < hH * ma) and (strategy.position_size > 0))
strategy.order("S4", false, unitsLevel4, when = (close > iL * ma) and (close < iH * ma) and (strategy.position_size > 0))
strategy.order("S5", false, unitsLevel5, when = (close > jL * ma) and (strategy.position_size > 0))

plot(ma, color=#666666, linewidth=5)