
La stratégie calcule plusieurs indicateurs de tendance pour effectuer des opérations d’achat et de vente lorsque ceux-ci sont inversés. Les principaux indicateurs de tendance sont les indicateurs TDI, TCF, TTF et TII. La stratégie choisit dans sa configuration l’indicateur à utiliser pour générer un signal de négociation.
L’indicateur TDI est basé sur la dynamique de variation du prix. Il est construit par la technique de la somme et de l’assouplissement. Lorsque l’indicateur de direction TDI est en hausse sur la courbe TDI, il est en baisse.
L’indicateur TCF calcule les variations positives et négatives du prix pour juger de la force des plus et des moins. Faites plus lorsque la force de la variation positive est supérieure à la force de la variation négative, sinon déposez.
L’indicateur TTF juge la tendance en comparant la force des hauts et des bas. Le signal de surcharge est de passer 100 sur l’indicateur TTF et vice versa.
L’indicateur TII combine la moyenne et la fourchette de prix pour juger du renversement de tendance. Il prend en compte à la fois les tendances à court et à long terme.
Logique d’entrée dans une position de multi-paix Sélectionnez les signaux de trading appropriés en fonction des indicateurs de configuration.
La stratégie intègre plusieurs indicateurs de trading de tendance couramment utilisés et offre la flexibilité nécessaire pour s’adapter aux conditions du marché. Les avantages spécifiques sont:
Les principaux risques de cette stratégie sont les suivants:
Les mesures suivantes peuvent être prises pour réduire le risque:
Cette stratégie peut être optimisée dans les domaines suivants:
La stratégie combine les avantages de plusieurs indicateurs de renversement de tendance, optimisés par la configuration d’indicateurs et de paramètres, qui peuvent s’adapter à différents environnements de marché et opérer à des points de renversement de tendance. La clé est de trouver la combinaison optimale de paramètres et d’indicateurs tout en contrôlant les risques.
/*backtest
start: 2023-11-13 00:00:00
end: 2023-11-15 03:00:00
period: 5m
basePeriod: 1m
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
*/
//@version=4
//
// This source code is subject to the terms of the Mozilla Public License 2.0 at https://mozilla.org/MPL/2.0/
// © kruskakli
//
// Here is a collection of Trend Indicators as defined by M.H Pee and presented
// in various articles of the "STOCKS & COMMODITIES Magazine"
//
// The actual implementation of the indicators here are made by: everget
//
// I have gather them here so that they easily can be tested.
//
// My own test was made using 15 companies from the OMXS30 list
// during the time period of 2016-2018, and I only went LONG.
//
// The result was as follows:
//
// Average Std.Dev
// profit
// TDI 3.04% 5.97
// TTF 1.22%. 5.73
// TII 1.07% 6.2
// TCF 0.32% 2.68
//
strategy("M.H Pee indicators", overlay=true)
use = input(defval="TDI", title="Use Indicator", type=input.string,
options=["TDI","TCF","TTF","TII"])
src = close
//
// TDI
//
length = input(title="Length", type=input.integer, defval=20)
mom = change(close, length)
tdi = abs(sum(mom, length)) - sum(abs(mom), length * 2) + sum(abs(mom), length)
// Direction Indicator
tdiDirection = sum(mom, length)
tdiLong = crossover(tdiDirection, tdi)
tdiXLong = crossunder(tdiDirection, tdi)
//
// TCF
//
tcflength = input(title="Length", type=input.integer, defval=35)
plusChange(src) =>
change_1 = change(src)
change(src) > 0 ? change_1 : 0.0
minusChange(src) =>
change_1 = change(src)
change(src) > 0 ? 0.0 : -change_1
plusCF = 0.0
plusChange__1 = plusChange(src)
plusCF := plusChange(src) == 0 ? 0.0 : plusChange__1 + nz(plusCF[1])
minusCF = 0.0
minusChange__1 = minusChange(src)
minusCF := minusChange(src) == 0 ? 0.0 : minusChange__1 + nz(minusCF[1])
plusTCF = sum(plusChange(src) - minusCF, tcflength)
minusTCF = sum(minusChange(src) - plusCF, tcflength)
tcfLong = plusTCF > 0
tcfXLong = plusTCF < 0
//
// TTF
//
ttflength = input(title="Lookback Length", type=input.integer, defval=15)
hh = highest(length)
ll = lowest(length)
buyPower = hh - nz(ll[length])
sellPower = nz(hh[length]) - ll
ttf = 200 * (buyPower - sellPower) / (buyPower + sellPower)
ttfLong = crossover(ttf, 100)
ttfXLong = crossunder(ttf, -100)
//
// TII
//
majorLength = input(title="Major Length", type=input.integer, defval=60)
minorLength = input(title="Minor Length", type=input.integer, defval=30)
upperLevel = input(title="Upper Level", type=input.integer, defval=80)
lowerLevel = input(title="Lower Level", type=input.integer, defval=20)
sma = sma(src, majorLength)
positiveSum = 0.0
negativeSum = 0.0
for i = 0 to minorLength - 1 by 1
price = nz(src[i])
avg = nz(sma[i])
positiveSum := positiveSum + (price > avg ? price - avg : 0)
negativeSum := negativeSum + (price > avg ? 0 : avg - price)
negativeSum
tii = 100 * positiveSum / (positiveSum + negativeSum)
tiiLong = crossover(tii, 80)
tiiXLong = crossunder(tii,80)
//
// LOGIC
//
enterLong = (use == "TDI" and tdiLong) or (use == "TCF" and tcfLong) or (use == "TTF" and ttfLong) or (use == "TII" and tiiLong)
exitLong = (use == "TDI" and tdiXLong) or (use == "TCF" and tcfXLong) or (use == "TTF" and ttfXLong) or (use == "TII" and tiiXLong)
// Time range for Back Testing
btStartYear = input(title="Back Testing Start Year", type=input.integer, defval=2016)
btStartMonth = input(title="Back Testing Start Month", type=input.integer, defval=1)
btStartDay = input(title="Back Testing Start Day", type=input.integer, defval=1)
startTime = timestamp(btStartYear, btStartMonth, btStartDay, 0, 0)
btStopYear = input(title="Back Testing Stop Year", type=input.integer, defval=2028)
btStopMonth = input(title="Back Testing Stop Month", type=input.integer, defval=12)
btStopDay = input(title="Back Testing Stop Day", type=input.integer, defval=31)
stopTime = timestamp(btStopYear, btStopMonth, btStopDay, 0, 0)
window() => time >= startTime and time <= stopTime ? true : false
riskPerc = input(title="Max Position %", type=input.float, defval=20, step=0.5)
maxLossPerc = input(title="Max Loss Risk %", type=input.float, defval=5, step=0.25)
// Average True Range (ATR) measures market volatility.
// We use it for calculating position sizes.
atrLen = input(title="ATR Length", type=input.integer, defval=14)
stopOffset = input(title="Stop Offset", type=input.float, defval=1.5, step=0.25)
limitOffset = input(title="Limit Offset", type=input.float, defval=1.0, step=0.25)
atrValue = atr(atrLen)
// Calculate position size
maxPos = floor((strategy.equity * (riskPerc/100)) / src)
// The position sizing algorithm is based on two parts:
// a certain percentage of the strategy's equity and
// the ATR in currency value.
riskEquity = (riskPerc / 100) * strategy.equity
// Translate the ATR into the instrument's currency value.
atrCurrency = (atrValue * syminfo.pointvalue)
posSize0 = min(floor(riskEquity / atrCurrency), maxPos)
posSize = posSize0 < 1 ? 1 : posSize0
if (window())
strategy.entry("Long", long=true, qty=posSize0, when=enterLong)
strategy.close_all(when=exitLong)