
সিংহ ফাটল সমতা কৌশল একটি সহজ সংক্ষিপ্ত লাইন ট্রেডিং কৌশল যা সমান্তরাল ক্রস উপর ভিত্তি করে। এই কৌশলটি প্রধানত দুটি চলমান গড় ব্যবহার করে, যখন দ্রুত চলমান গড় নীচে থেকে ধীর চলমান গড় অতিক্রম করে, তখন বেশি করে; যখন দ্রুত চলমান গড় উপরে থেকে ধীর চলমান গড় অতিক্রম করে, তখন সমান্তরাল। কৌশলটির নামটি ট্রেডিং জগতে জনপ্রিয় সিংহ ফাটল শব্দটি থেকে নেওয়া হয়েছে, যা সংক্ষিপ্ত লাইন মূল্যের ক্ষুদ্র গতিবিধিকে ক্যাপচার করে, যা সংকীর্ণ সমান্তরাল ফাটল থেকে লাভ করে।
এই কৌশলটি দুটি চলমান গড় ব্যবহার করেঃ দ্রুত চলমান গড় ছোট MAPeriod এবং ধীর চলমান গড় bigMAPeriod। দুটি চলমান গড় মূল্য চ্যানেল গঠন করে, চ্যানেলের নীচে দ্রুত চলমান গড় এবং চ্যানেলের উপরে ধীর চলমান গড়। যখন দাম নীচে থেকে উপরে উঠে যায় এবং চ্যানেলের নীচে দ্রুত চলমান গড়কে ভেঙে দেয়, তখন আরও বেশি করুন; যখন দাম উপরে থেকে নীচে পড়ে এবং চ্যানেলের ধীর গতির চলমান গড়কে ভেঙে দেয়, তখন প্যাসিং করুন।
বিশেষভাবে, কৌশলটি প্রথমে দ্রুত চলমান গড় ছোট এমএ এবং ধীর চলমান গড় বড় এমএ গণনা করে। তারপরে চ্যানেলের নীচে ক্রয় লাইন কিনুন এমএ গণনা করে, যা ধীর চলমান গড়ের ((100 - percentBelowToBuy) %। যখন দ্রুত চলমান গড় ছোট এমএ ক্রয় লাইন ক্রয় লাইন ক্রয় লাইন ক্রয় লাইন ক্রয় লাইন ক্রয় লাইন ক্রয় লাইন ক্রয় লাইন ক্রয় লাইন ক্রয় লাইন ক্রয় লাইন ক্রয় লাইন ক্রয় লাইন ক্রয় লাইন ক্রয় লাইন ক্রয় লাইন ক্রয় লাইন ক্রয় লাইন ক্রয় লাইন ক্রয় লাইন ক্রয় লাইন ক্রয় লাইন ক্রয় লাইন ক্রয় লাইন ক্রয় লাইন ক্রয় লাইন ক্রয় লাইন ক্রয় লাইন ক্রয় লাইন ক্রয় ক্রয় ক্রয় ক্রয় ক্রয় ক্রয় ক্রয় ক্রয় ক্রয় ক্রয় ক্রয় ক্রয় ক্রয় ক্রয় ক্রয় ক্রয় ক্রয় ক্রয় ক্রয় ক্রয় ক্রয় ক্রয় ক্রয় ক্রয় ক্রয় ক্রয় ক্রয় ক্রয় ক্রয় ক্রয় ক্রয় ক্রয় ক্রয় ক্রয় ক্রয় ক্রয় ক্রয় ক্রয় ক্রয় ক্রয় ক্রয় ক্রয় ক্রয় ক্রয় ক্রয় ক্র
সংক্ষেপে, এই কৌশলটি সমান্তরাল সিংহের ফাটলকে ক্যাপচার করে, যা হ’ল সংক্ষিপ্ত মুনাফা অর্জনের লক্ষ্যে চ্যানেলের নীচে একটি সুযোগকে ভেঙে দেয়। এটি একই সাথে স্টপ এবং স্টপ লস শর্তগুলি সেট করে যা একক লেনদেনের ঝুঁকি নিয়ন্ত্রণ করে।
এই কৌশলটির সুবিধাগুলো হলঃ
ধারণাগুলি সহজ, সহজে বোঝা যায় এবং বাস্তবায়ন করা যায়। দ্বি-সমান-লাইন ক্রস ব্যবহার করা হল সবচেয়ে মৌলিক প্রযুক্তিগত সূচক কৌশল।
ট্রেডিং ভিউ-এর সাথে যুক্ত ট্রেডিং ফিডব্যাকের সাথে এই কৌশলটি সহজেই ব্যবহার করা যায়। এর জন্য কোন অতিরিক্ত বাস্তবায়ন প্রয়োজন নেই।
ট্রেডিং ভিউ ব্যবহার করে ট্রেডিং সিগন্যাল পয়েন্ট এবং রিটার্নিং পরিসংখ্যান সরাসরি চার্টে প্রদর্শিত হয়।
ঝুঁকি নিয়ন্ত্রণযোগ্য। কৌশলটি স্টপস্টপ এবং স্টপ লস শর্তাদি সেট করে যা একক লেনদেনের ক্ষতি কার্যকরভাবে নিয়ন্ত্রণ করতে পারে।
নমনীয়তাঃ ব্যবহারকারীরা তাদের প্রয়োজন অনুসারে গড় লাইন প্যারামিটার এবং অন্যান্য প্রযুক্তিগত সূচকগুলি সামঞ্জস্য করতে পারেন, যাতে কৌশলগুলি বিভিন্ন জাত এবং ট্রেডিং শৈলীর জন্য আরও উপযুক্ত হয়।
এই কৌশলটি নিম্নলিখিত ঝুঁকিগুলিও বহন করেঃ
অতিরিক্ত সংকেত তৈরি হতে পারে। দ্বৈত সমান্তরাল কৌশলগুলি সমন্বয় করার সময় একাধিক ভুল সংকেত তৈরি করতে পারে।
একক সূচকের উপর নির্ভরশীলতা। কেবলমাত্র গড় লাইন ক্রসিং ব্যবহার করে সিদ্ধান্ত নেওয়া, অন্যান্য কারণগুলি উপেক্ষা করা, সংকেতের গুণমান খারাপ হতে পারে।
প্যারামিটার অপ্টিমাইজ করা কঠিন। গড়-লিনিয়ার পিরিয়ড প্যারামিটার সমন্বয়কে অপ্টিমাইজ করার জন্য প্রচুর গণনা প্রয়োজন। সর্বোত্তম প্যারামিটার খুঁজে পাওয়া সহজ নয়।
প্রতিক্রিয়া বিভ্রান্তি: সহজ দ্বি-সমতুল্য কৌশলগুলি প্রায়শই শক্ত ডিস্কের চেয়ে ভাল প্রতিক্রিয়া দেখায়।
স্টপ লস অসুবিধা। স্থির স্টপ লস পয়েন্ট সেট করা পরিস্থিতির পরিবর্তনের সাথে খাপ খাইয়ে নিতে অসুবিধা।
এই কৌশলটি নিম্নলিখিত দিকগুলি থেকে অপ্টিমাইজ করা যায়ঃ
অন্যান্য সূচক ফিল্টার সংকেত যেমন লেনদেনের পরিমাণ, ওঠানামার হার ইত্যাদির সাথে মিলিত করে, সমন্বয়কালে অকার্যকর সংকেত তৈরি করা এড়ানো যায়।
ট্রেন্ড ভিত্তিক বিচার বৃদ্ধি, বিপরীত ট্রেডিং এড়ানো। আপনি ট্রেন্ডের দিক নির্ধারণের জন্য লং চক্রের গড় লাইন যোগ করতে পারেন।
মেশিন লার্নিং ব্যবহার করে সর্বোত্তম প্যারামিটার খুঁজুন। সিরিয়াল প্যারামিটার অপ্টিমাইজেশন বা জেনেটিক অ্যালগরিদম ব্যবহার করে স্বয়ংক্রিয়ভাবে সর্বোত্তম প্যারামিটার সমন্বয় খুঁজুন।
স্টপ-অফ কৌশল যেমন স্টপ-ট্র্যাকিং, স্টপ-অফ মুভিং, স্টপ-অফকে আরও স্থিতিস্থাপক করে তোলা।
প্রবেশের সময়কে অনুকূলিতকরণ করুন। অন্যান্য সূচক ব্যবহার করে আরও কার্যকর প্রবেশের সময় চিহ্নিত করা যেতে পারে।
কোয়ান্টামাইজড গবেষণার সাথে যুক্ত প্যারামিটার সমন্বয়কে রিটার্ন অপ্টিমাইজ করা, স্থিতিশীলতা বাড়ানো।
স্বয়ংক্রিয় ট্রেডিং সিস্টেম তৈরি করা, পরামিতি সমন্বয় অপ্টিমাইজেশান এবং কৌশলগত মূল্যায়নের জন্য প্রোগ্রামযুক্ত ট্রেডিং ব্যবহার করা।
লায়ন ফাটল সমীকরণ কৌশলটি একটি প্রাথমিক কৌশল যা শিক্ষানবিসদের জন্য খুব উপযুক্ত। এটি একটি সহজ দ্বৈত সমান্তরাল ক্রস নীতি ব্যবহার করে, স্টপ-স্টপ-লস নিয়ম সেট করে এবং সংক্ষিপ্ত লাইন মূল্যের ওঠানামা ধরতে পারে। এই কৌশলটি বোঝা সহজ, বাস্তবায়ন করা সহজ এবং ভাল ফিডব্যাকের প্রভাব রয়েছে। তবে এটির অপ্টিমাইজেশনের অসুবিধা বেশি এবং রিয়েল-টাইম কার্যকারিতা সন্দেহজনক। আমরা অন্যান্য প্রযুক্তিগত সূচক, অপ্টিমাইজেশন প্যারামিটার এবং স্বয়ংক্রিয় ট্রেডিং সিস্টেমের বিকাশের মাধ্যমে এই কৌশলটি উন্নত করতে পারি। সামগ্রিকভাবে, লায়ন ফাটল সমীকরণ কৌশলটি পরিমাণগত ব্যবসায়ের শিক্ষানবিদের জন্য একটি দুর্দান্ত শেখার প্ল্যাটফর্ম সরবরাহ করে।
/*backtest
start: 2023-10-02 00:00:00
end: 2023-11-01 00:00:00
period: 1h
basePeriod: 15m
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
*/
// This source code is subject to the terms of the Mozilla Public License 2.0 at https://mozilla.org/MPL/2.0/
// © TraderHalai
// This script was born out of my quest to be able to display strategy back test statistics on charts to allow for easier backtesting on devices that do not natively support backtest engine (such as mobile phones, when I am backtesting from away from my computer). There are already a few good ones on TradingView, but most / many are too complicated for my needs.
//
//Found an excellent display backtest engine by 'The Art of Trading'. This script is a snippet of his hard work, with some very minor tweaks and changes. Much respect to the original author.
//
//Full credit to the original author of this script. It can be found here: https://www.tradingview.com/script/t776tkZv-Hammers-Stars-Strategy/?offer_id=10&aff_id=15271
//
// This script can be copied and airlifted onto existing strategy scripts of your own, and integrates out of the box without implementation of additional functions. I've also added Max Runup, Average Win and Average Loss per trade to the orignal script.
//
//Will look to add in more performance metrics in future, as I further develop this script.
//
//Feel free to use this display panel in your scripts and strategies.
//Thanks and enjoy! :)
//@version=5
// strategy("Strategy BackTest Display Statistics - TraderHalai", overlay=true, default_qty_value= 5, default_qty_type = strategy.percent_of_equity, initial_capital=10000, commission_type=strategy.commission.percent, commission_value=0.1)
//DEMO basic strategy - Use your own strategy here - Jaws Mean Reversion from my profile used here
source = input(title = "Source", defval = close)
smallMAPeriod = input(title = "Small Moving Average", defval = 2)
bigMAPeriod = input(title = "Big Moving Average", defval = 8)
percentBelowToBuy = input(title = "Percent below to buy %", defval = 1)
smallMA = ta.sma(source, smallMAPeriod)
bigMA = ta.sma(source, bigMAPeriod)
buyMA = ((100 - percentBelowToBuy) / 100) * ta.sma(source, bigMAPeriod)[0]
buy = ta.crossunder(smallMA, buyMA)
if(buy)
strategy.entry("BUY", strategy.long)
if(strategy.openprofit >= strategy.position_avg_price * 0.01) // 1% profit target
strategy.close("BUY")
if(ta.barssince(buy) >= 7) //Timed Exit, if you fail to make 1 percent in 7 candles.
strategy.close("BUY")
///////////////////////////// --- BEGIN TESTER CODE --- ////////////////////////
// COPY below into your strategy to enable display
////////////////////////////////////////////////////////////////////////////////
// strategy.initial_capital = 50000
// // Declare performance tracking variables
// drawTester = input.bool(true, "Draw Tester")
// var balance = strategy.initial_capital
// var drawdown = 0.0
// var maxDrawdown = 0.0
// var maxBalance = 0.0
// var totalWins = 0
// var totalLoss = 0
// // Prepare stats table
// var table testTable = table.new(position.top_right, 5, 2, border_width=1)
// f_fillCell(_table, _column, _row, _title, _value, _bgcolor, _txtcolor) =>
// _cellText = _title + "\n" + _value
// table.cell(_table, _column, _row, _cellText, bgcolor=_bgcolor, text_color=_txtcolor)
// // Custom function to truncate (cut) excess decimal places
// truncate(_number, _decimalPlaces) =>
// _factor = math.pow(10, _decimalPlaces)
// int(_number * _factor) / _factor
// // Draw stats table
// var bgcolor = color.new(color.black,0)
// if drawTester
// if barstate.islastconfirmedhistory
// // Update table
// dollarReturn = strategy.netprofit
// f_fillCell(testTable, 0, 0, "Total Trades:", str.tostring(strategy.closedtrades), bgcolor, color.white)
// f_fillCell(testTable, 0, 1, "Win Rate:", str.tostring(truncate((strategy.wintrades/strategy.closedtrades)*100,2)) + "%", bgcolor, color.white)
// f_fillCell(testTable, 1, 0, "Starting:", "$" + str.tostring(strategy.initial_capital), bgcolor, color.white)
// f_fillCell(testTable, 1, 1, "Ending:", "$" + str.tostring(truncate(strategy.initial_capital + strategy.netprofit,2)), bgcolor, color.white)
// f_fillCell(testTable, 2, 0, "Avg Win:", "$"+ str.tostring(truncate(strategy.grossprofit / strategy.wintrades, 2)), bgcolor, color.white)
// f_fillCell(testTable, 2, 1, "Avg Loss:", "$"+ str.tostring(truncate(strategy.grossloss / strategy.losstrades, 2)), bgcolor, color.white)
// f_fillCell(testTable, 3, 0, "Profit Factor:", str.tostring(truncate(strategy.grossprofit / strategy.grossloss,2)), strategy.grossprofit > strategy.grossloss ? color.green : color.red, color.white)
// f_fillCell(testTable, 3, 1, "Max Runup:", str.tostring(truncate(strategy.max_runup, 2 )), bgcolor, color.white)
// f_fillCell(testTable, 4, 0, "Return:", (dollarReturn > 0 ? "+" : "") + str.tostring(truncate((dollarReturn / strategy.initial_capital)*100,2)) + "%", dollarReturn > 0 ? color.green : color.red, color.white)
// f_fillCell(testTable, 4, 1, "Max DD:", str.tostring(truncate((strategy.max_drawdown / strategy.equity) * 100 ,2)) + "%", color.red, color.white)
// // --- END TESTER CODE --- ///////////////