Estrategia de trading de ruptura basada en el impulso


Fecha de creación: 2024-02-04 10:55:31 Última modificación: 2024-02-04 10:55:31
Copiar: 0 Número de Visitas: 689
1
Seguir
1617
Seguidores

Estrategia de trading de ruptura basada en el impulso

Descripción general

La estrategia es una estrategia de negociación de ruptura basada en indicadores de dinámica. Utiliza varios indicadores como la línea media, el ATR y el RSI para determinar la tendencia y la volatilidad del mercado, junto con una estricta configuración de stop loss para negociar. La estrategia determina principalmente si el precio rompe la línea media ascendente o descendente más el rango de ATR para generar una señal de negociación.

Principio de estrategia

La estrategia se basa principalmente en los siguientes puntos:

  1. Utiliza la línea media de la EMA para determinar la dirección de la tendencia del precio. La línea media de la parte superior del precio es una señal de alza y la línea media de la parte inferior es una señal de baja.

  2. El indicador ATR determina la volatilidad del mercado. El ATR se multiplica por un factor como un margen de pérdida. Esto puede controlar eficazmente las pérdidas individuales.

  3. El indicador RSI determina sobrecompra y sobreventa. El breakout de ATR y el breakout de la línea media deben ser activados en el caso de que el RSI no esté sobrecompra y no esté sobreventa. Esto evita falsos breakouts.

  4. Utiliza los máximos o mínimos previos como base de salida de la parada. El seguimiento del precio de la parada puede bloquear más ganancias.

  5. Las reglas estrictas de stop-loss. El stop-loss ATR combinado con el indicador de volatilidad controla el riesgo, mientras que la configuración de stop-loss puede bloquear los beneficios.

La señal de entrada es el precio que rompe la línea media más el rango de pérdida ATR. Si es una señal de alza, entonces el precio necesita subir por el punto alto; Si es una señal de baja, entonces el precio necesita romper el punto bajo.

Análisis de las ventajas

La estrategia tiene las siguientes ventajas:

  1. El juicio de múltiples indicadores evita falsos avances y mejora la precisión de la señal

  2. La configuración del rango de pérdidas ATR permite controlar las pérdidas a un nivel razonable

  3. El bloqueo de seguimiento dinámico maximiza las ganancias

  4. Las estrictas reglas de stop-loss ayudan a controlar el riesgo

  5. Los indicadores y parámetros tienen mucho espacio para ser optimizados y adaptados a los diferentes mercados

Análisis de riesgos

La estrategia también tiene los siguientes riesgos:

  1. La capacidad de ganancia está relacionada con la volatilidad del mercado. Cuando la tendencia del mercado es incierta o el ciclo es largo, el espacio para obtener ganancias es limitado.

  2. Es posible que se produzca una nueva ruptura después de la oscilación del precio de parada. Esto puede causar la imposibilidad de establecer la posición a tiempo para seguir la tendencia. Se puede relajar adecuadamente el precio de parada.

  3. chasing。

Dirección de optimización

La estrategia puede ser optimizada en los siguientes aspectos:

  1. Ajuste de los parámetros de la línea media según las diferentes variedades y períodos, los parámetros ATR, etc.

  2. Se pueden introducir más indicadores para juzgar, como el MACD, KDJ y otros para juzgar sobrecompra y sobreventa.

  3. Se puede ajustar el coeficiente de stop loss en tiempo real en función de los valores de ATR. Para que el stop loss se adapte mejor a las fluctuaciones del mercado.

  4. Establecer una combinación de varios períodos de tiempo. La combinación de indicadores de diferentes períodos puede mejorar la calidad de la señal.

  5. Utiliza técnicas de aprendizaje automático para probar y optimizar los indicadores y parámetros para optimizar los parámetros de la estrategia.

Resumir

La estrategia en su conjunto es una estrategia de negociación de ruptura que utiliza indicadores para juzgar, estrictamente para detener el stop loss. Utiliza eficazmente las ventajas de indicadores como la línea media, ATR y RSI, para poder determinar eficazmente la dirección de la tendencia del mercado. Combinado con una estricta configuración de stop loss, puede capturar la tendencia de ganancias al mismo tiempo que controla el riesgo. Optimizado con parámetros y reglas, la estrategia puede convertirse en una estrategia de negociación cuantitativa que vale la pena usar a largo plazo.

Código Fuente de la Estrategia
/*backtest
start: 2024-01-27 00:00:00
end: 2024-02-03 00:00:00
period: 5m
basePeriod: 1m
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
*/

//@version=4
strategy(title="UT Bot Strategy", overlay = true)
//CREDITS to HPotter for the orginal code. The guy trying to sell this as his own is a scammer lol. 
// Inputs
emaLengh = input(2, title = "emaLengh")
a = input(3.0,     title = "Key Vaule. 'This changes the sensitivity'")
c = input(10,    title = "ATR Period")
h = input(false, title = "Signals from Heikin Ashi Candles")
emaLengh2 = input(9, title = "emaLengh show")




rate = input(0.00025,    title = "波动率min")
rateMax = input(0.00045,    title = "波动率max")
adx_length =   input(20,    title = "adx_length")
adx_min =   input(14,    title = "adx_min")

sma_length =   input(11,    title = "sma_length")
rsi_len = input(9, title = "rsi_len")

src = h ? security(heikinashi(syminfo.tickerid), timeframe.period, close, lookahead = false) : close

// boll 通道----------------------------------------------------
length = input(20, minval=1)
mult = input(2.0, minval=0.001, maxval=50, title="StdDev")
basis = sma(src, length)
dev = mult * stdev(src, length)
upper = basis + dev
lower = basis - dev
bbr = (src - lower)/(upper - lower)
// plot(upper, color = color.rgb(46, 59, 240), title="upper")
// plot(lower, color = color.rgb(46, 59, 240), title="lower")


// plot(bbr, "Bollinger Bands %B", color=#26A69A)
// band1 = hline(1, "Overbought", color=#787B86, linestyle=hline.style_dashed)
// hline(0.5, "Middle Band", color=color.new(#787B86, 50))
// band0 = hline(0, "Oversold", color=#787B86, linestyle=hline.style_dashed)
// fill(band1, band0, color=color.rgb(38, 166, 154, 90), title="Background")
// boll 通道----------------------------------------------------

// 线性回归 --------------------------------------------------------------
zlsma_length = input(title="zlsma-Length", type=input.integer, defval=50)
zlsma_offset = input(title="zlsma-Offset", type=input.integer, defval=0)
lsma = linreg(src, zlsma_length, zlsma_offset)
lsma2 = linreg(lsma, zlsma_length, zlsma_offset)
eq= lsma-lsma2
zlsma = lsma+eq
// plot(zlsma , color = color.rgb(243, 243, 14), title="zlsma",linewidth=3)
// 线性回归 --------------------------------------------------------------



// --------------------------------
rsi = rsi(src, 6)

// xHH = sma(high, sma_length)
// xLL = sma(low, sma_length)
// movevalue = (xHH - xLL) / 2
// xHHM = xHH + movevalue
// xLLM = xLL - movevalue

// plot(xHHM, color = color.rgb(208, 120, 219), title="xHHM")
// plot(xLLM, color = color.rgb(208, 120, 219), title="xLLM")


xATR  = atr(c)
nLoss = a * xATR



xATRTrailingStop = 0.0
xATRTrailingStop := iff(src > nz(xATRTrailingStop[1], 0) and src[1] > nz(xATRTrailingStop[1], 0), max(nz(xATRTrailingStop[1]), src - nLoss),
   iff(src < nz(xATRTrailingStop[1], 0) and src[1] < nz(xATRTrailingStop[1], 0), min(nz(xATRTrailingStop[1]), src + nLoss), 
   iff(src > nz(xATRTrailingStop[1], 0), src - nLoss, src + nLoss)))


 
pos = 0   
pos :=	iff(src[1] < nz(xATRTrailingStop[1], 0) and src > nz(xATRTrailingStop[1], 0), 1,
   iff(src[1] > nz(xATRTrailingStop[1], 0) and src < nz(xATRTrailingStop[1], 0), -1, nz(pos[1], 0))) 
   
xcolor = pos == -1 ? color.red: pos == 1 ? color.green : color.blue 

ema   = ema(src,emaLengh)
// sma   = sma(src,emaLengh)
emaFast   = ema(src,100)
emaSlow   = ema(src,576)
emaShow   = ema(src, emaLengh2)
// sma       =  sma(src, 8)

// [superTrend, dir] = supertrend(3, 200) 
// 判断连续涨

[diplus, diminus, adx] = dmi(adx_length, adx_length)


above = crossover(ema, xATRTrailingStop)
below = crossover(xATRTrailingStop, ema)
// above = ema == xATRTrailingStop
// below = xATRTrailingStop== ema

// smaabove = crossover(src, sma)
// smabelow = crossover(sma, src)
// smaabove = src > sma
// smabelow = sma > src
close_rate (n)=>
    abs(close[n]-open[n])/min(close[n],open[n])

rate_val = close_rate(0)
rate_val1 = close_rate(1)

buy  = src > xATRTrailingStop and above  and src > zlsma  and adx >adx_min
// and  src>emaShow
// and rate_val < rate_val1*2 and rate_val >=rate_val1
// and rate_val1<rateMax
// and close[1]>open[1] 
sell = src < xATRTrailingStop and below  and src < zlsma and adx >adx_min
// and  src<emaShow
// and rate_val < rate_val1*2  and rate_val >=rate_val1
//  and rate_val1<rateMax
// and open[1]>close[1]  and rate_val1 > rate  

// buy  = src > xATRTrailingStop 
// sell = src < xATRTrailingStop 
// plot(rate_val1 , color = color.red, title="rate_val1")



barbuy  = src > xATRTrailingStop 
barsell = src < xATRTrailingStop

atrRsi = rsi(xATRTrailingStop,rsi_len)

// plot(emaFast , color = color.rgb(243, 206, 127), title="emaFast")
// plot(ema , color = color.rgb(47, 227, 27), title="ut-ema")



// plot(emaShow , color = color.rgb(47, 227, 27), title="ema9")

plot(xATRTrailingStop, color = color.rgb(233, 233, 232), title="xATRTrailingStop")

plotshape(buy,  title = "Buy",  text = 'Buy',  style = shape.labelup,   location = location.belowbar, color= color.green, textcolor = color.white, size = size.tiny)
plotshape(sell, title = "Sell", text = 'Sell', style = shape.labeldown, location = location.abovebar, color= color.red,   textcolor = color.white, size = size.tiny)


// plotshape(buy,  title = "Sell",  text = 'Sell',  style = shape.labelup,   location = location.belowbar, color= color.green, textcolor = color.white, transp = 0, size = size.tiny)
// plotshape(sell, title = "buy", text = 'buy', style = shape.labeldown, location = location.abovebar, color= color.red,   textcolor = color.white, transp = 0, size = size.tiny)

// barcolor(barbuy  ? color.green : na)
// barcolor(barsell ? color.red   : na)

// strategy.entry("short",   false, when = buy)
// strategy.entry("long ", true, when = sell)


strategy.entry("long",   true, when = buy and strategy.position_size == 0)
strategy.entry("short", false, when = sell and strategy.position_size == 0)


//动态止盈start------------------------------------------------------------------------------------------
profit = input( 0.015,     title = "最小收益率")
close_profit_rate = input( 10,     title = "平仓收益回撤比")
loss = input(0.004,    title = "回撤率")

// 收益回撤比例
profit_price_scale =profit/close_profit_rate

var float profit_price = 0


// 计算小收益价格

get_profit_price(long) =>
    float res = 0
    if long == true
        res := strategy.position_avg_price * (1+profit)
    if long == false
        res := strategy.position_avg_price * (1-profit)
    res

// 止盈平仓条件
close_profit_position(long)=>
    bool result=false
    if long == true and profit_price>0 and profit_price*(1-profit_price_scale) >=close and  get_profit_price(true) <= close 
        result:=true
    if long == false and profit_price>0 and profit_price*(1+profit_price_scale) <=close and  get_profit_price(false) >= close 
        result:=true
    result

// 更新动态止盈价格
update_profit_price(price)=>
    float res = price
   // 无仓位时 动态止盈价格为0
    if strategy.position_size == 0 
        res := 0
   // long - 价格大于最小收益时保存
    if strategy.position_size > 0 and get_profit_price(true) <= close and (res==0 or res < close)
        res := close
   // short - 价格小于最小收益时保存
    if strategy.position_size < 0 and get_profit_price(true) >= close and (res==0 or res > close)
        res := close
    res
   
///////



profit_price := update_profit_price(profit_price)
long_close_profit_position = close_profit_position(true)
short_close_profit_position = close_profit_position(false)

// plot(profit_price, color = color.green, title="profit_price")
//动态止盈end------------------------------------------------------------------------------------------




strategy.close("long",comment="long-止盈",when = strategy.position_size > 0 and long_close_profit_position)

strategy.close("long",comment="long-止损",when = strategy.position_size >0 and strategy.position_avg_price * (1-loss) >= close)

strategy.close("short",comment="short-止盈",when = strategy.position_size <0 and short_close_profit_position)

strategy.close("short",comment="short-止损",when = strategy.position_size <0 and strategy.position_avg_price * (1+loss) <= close)