Strategi Perdagangan Kuantitatif DCA Berwajaran Elemen Progresif


Tarikh penciptaan: 2023-11-16 11:32:12 Akhirnya diubah suai: 2023-11-16 11:32:12
Salin: 0 Bilangan klik: 767
1
fokus pada
1617
Pengikut

Strategi Perdagangan Kuantitatif DCA Berwajaran Elemen Progresif

Gambaran keseluruhan

Strategi perdagangan kuantitatif DCA bertimbangan elemen progresif adalah strategi perdagangan kuantitatif yang menggabungkan isyarat pemicu indikator purata bergerak dan mekanisme purata kos dolar bertimbangan progresif. Strategi ini bertujuan untuk mendapatkan keuntungan yang lebih stabil dalam pasaran yang lebih berorientasikan trend dengan cara menilai trend dan membahagikan kos.

Prinsip

Strategi ini terdiri daripada tiga bahagian utama:

  1. Penghakiman isyarat masuk

Menggunakan persilangan purata bergerak cepat dan purata bergerak perlahan sebagai isyarat untuk menilai masuk. Sesuai dengan tetapan pengguna, anda boleh memilih SMA, EMA atau HMA sebagai rata-rata bergerak cepat. Isyarat beli dihasilkan apabila rata-rata bergerak cepat menembusi rata-rata bergerak perlahan dari bawah; isyarat jual dihasilkan apabila rata-rata bergerak cepat jatuh dari atas.

  1. Peningkatan DCA

Selepas isyarat beli dipicu, strategi akan segera membuka kedudukan untuk menubuhkan kedudukan asas. Jika harga terus menurun, strategi akan meningkatkan kedudukan keselamatan berikutnya dengan cara menaikkan berat secara beransur-ansur.

Oleh itu, dengan cara menaikkan kedudukan secara beransur-ansur, anda boleh mencapai tahap penyeimbangan kos, dan mendapatkan harga kos yang lebih baik sambil memastikan risiko perdagangan dapat dikawal.

  1. Stop Stop Loss

Strategi ini akan memilih untuk berhenti apabila harga naik dan melanggar had berhenti; strategi ini akan memilih untuk berhenti apabila harga turun dan melanggar had berhenti.

Garis penutup ditetapkan sebagai asas kedudukan 1 + peratusan tetap dari harga purata transaksi.

Garis hentian turun naik harga dengan kedudukan selamat terakhir. Berdasarkan harga transaksi pada kedudukan selamat terakhir, isyarat hentian disahkan di bawah peratusan tertentu.

Kelebihan

  1. Strategi yang lebih stabil, digabungkan dengan penilaian trend dan perbandingan kos

Penghakiman trend dapat mengelakkan pasaran yang bergolak tanpa arah, dengan kos yang sama dapat memperoleh kos yang lebih baik dalam trend.

  1. Risiko yang boleh dikawal

Setiap kedudukan keseimbangan mempunyai skala tertentu, dan kedudukan seterusnya mempunyai keperluan penarikan balik tertentu, yang dapat mengawal risiko.

  1. Strategi pemantauan dalam masa nyata mengenai penggunaan dana

Kod ini menambah label pemantauan masa nyata, yang membolehkan pengguna mengetahui dengan jelas mengenai had penggunaan strategi, dan mengelakkan penggunaan berlebihan yang menyebabkan kedudukan ditingkatkan.

  1. Kedudukan Stop Loss Fleksibel

Kedudukan asas dan kedudukan selamat boleh menghentikan kerugian, menamatkan keuntungan dan mengawal risiko.

Risiko dan pengoptimuman

  1. Harga yang bergolak boleh menyebabkan kenaikan harga beberapa kali

Apabila harga bergoyang-goyang, ia mungkin mencetuskan beberapa kali penambahan kedudukan yang akan meningkatkan kerugian. Ia boleh dikurangkan dengan meningkatkan keperluan untuk menarik balik antara kedudukan keselamatan seterusnya.

  1. Pilihan parameter garis rata-rata perlu dioptimumkan

Parameter garis purata secara langsung mempengaruhi masa kemasukan, pelbagai jenis memerlukan ujian untuk menentukan parameter yang sesuai.

  1. Rasio penghentian kerosakan perlu diuji dan dioptimumkan

Peratusan stop loss berkaitan dengan kadar pulangan dan kawalan penarikan balik, yang memerlukan tetapan optimum melalui data retrospeksi.

  1. Syarat-syarat penyingkiran wajib boleh ditetapkan berdasarkan penarikan balik atau masa

Untuk mengawal risiko, anda boleh menguji penambahan keadaan kedudukan terhad yang dikenakan untuk penarikan maksimum atau tempoh memegang kedudukan melebihi nilai terhad.

ringkaskan

Strategi perdagangan kuantitatif DCA bertimbangan elemen progresif menggabungkan kelebihan penilaian trend dengan kos yang seimbang, dan dapat memperoleh keuntungan yang stabil dalam keadaan trend yang kuat. Dengan menetapkan parameter yang dioptimumkan, menyesuaikan saiz kedudukan dan keperluan penarikan balik antara kedudukan, perdagangan yang stabil dapat dicapai dengan risiko yang terkawal.

Kod sumber strategi
/*backtest
start: 2022-11-09 00:00:00
end: 2023-11-15 00:00:00
period: 1d
basePeriod: 1h
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
*/

// This source code is subject to the terms of the Mozilla Public License 2.0 at https://mozilla.org/MPL/2.0/
// © MGTG

//@version=5
Strategy = input.string('Long', options=['Long'], group='Strategy', inline='1',
 tooltip='Long bots profit when asset prices rise, Short bots profit when asset prices fall'
 + '\n\n' + 'Please note: to run a Short bot on a spot exchange account, you need to own the asset you want to trade. The bot will sell the asset at the current chart price and buy it back at a lower price - the profit made is actually trapped equity released from an asset you own that is declining in value.')

Profit_currency = input.string('Quote (USDT)', 'Profit currency', options=['Quote (USDT)', 'Quote (BTC)', 'Quote (BUSD)'], group='Strategy', inline='1')
Base_order_size = input.int(10, 'Base order Size', group='Strategy', inline='2', 
 tooltip='The Base Order is the first order the bot will create when starting a new deal.')
Safety_order_size = input.int(20, 'Safety order Size', group='Strategy', inline='2',
 tooltip="Enter the amount of funds your Safety Orders will use to Average the cost of the asset being traded, this can help your bot to close deals faster with more profit. Safety Orders are also known as Dollar Cost Averaging and help when prices moves in the opposite direction to your bot's take profit target.")

Triger_Type = input.string('Over', 'Entry at Cross Over / Under', options=['Over', 'Under'], group='Deal start condition > Trading View custom signal', inline='1',
 tooltip='Deal start condition decision')

Short_Moving_Average  = input.string('SMA', 'Short Moving Average', group='Deal start condition > Trading View custom signal', inline='2',
 options=["SMA", "EMA", "HMA"])
Short_Period         = input.int(5, 'Period', group='Deal start condition > Trading View custom signal', inline='2')
Long_Moving_Average  = input.string('HMA', 'Long Moving Average', group='Deal start condition > Trading View custom signal', inline='3',
 options=["SMA", "EMA", "HMA"])

Long_Period          = input.int(50, 'Period', group='Deal start condition > Trading View custom signal', inline='3')

Target_profit = input.float(1.5, 'Target profit (%)', step=0.05, group='Take profit / Stop Loss', inline='1') * 0.01
Stop_Loss = input.int(15, 'Stop Loss (%)', group='Take profit / Stop Loss', inline='1',
 tooltip='This is the percentage that price needs to move in the opposite direction to your take profit target, at which point the bot will execute a Market Order on the exchange account to close the deal for a smaller loss than keeping the deal open.'
 + '\n' + 'Please note, the Stop Loss is calculated from the price the Safety Order at on the exchange account and not the Dollar Cost Average price.') * 0.01

Max_safety_trades_count = input.int(10, 'Max safety trades count', maxval=10, group='Safety orders', inline='1')
Price_deviation = input.float(0.4, 'Price deviation to open safety orders (% from initial order)', step=0.01, group='Safety orders', inline='2') * 0.01
Safety_order_volume_scale = input.float(1.8, 'Safety order volume scale', step=0.01, group='Safety orders', inline='3')
Safety_order_step_scale = input.float(1.19, 'Safety order step scale', step=0.01, group='Safety orders', inline='3')

// daily_volume  = input.int(500, "Don't start deal(s) if the daily volume is less than", group='Advanced settings', inline='1')
// Minimum_price  = input.int(500, "Minimum price to open deal", group='Advanced settings', inline='1')
// Maximum_price  = input.int(500, "Maximum price to open deal", group='Advanced settings', inline='1')

// Close_deal_after_timeout  = input.int(5, "Close deal after timeout (Hrs)", group='Advanced settings', inline='1')

initial_capital = 8913

strategy(
 title='3Commas Visible DCA Strategy', 
 overlay=true, 
 initial_capital=initial_capital, 
 pyramiding=11, 
 process_orders_on_close=true, 
 commission_type=strategy.commission.percent, 
 commission_value=0.01, 
 max_bars_back=5000, 
 max_labels_count=50)


// Position
status_none  = strategy.position_size == 0
status_long  = strategy.position_size[1] == 0 and strategy.position_size > 0
status_long_offset  = strategy.position_size[2] == 0 and strategy.position_size[1] > 0
status_short = strategy.position_size[1] == 0 and strategy.position_size < 0
status_increase = strategy.opentrades[1] < strategy.opentrades

Short_Moving_Average_Line = 
 Short_Moving_Average == 'SMA' ? ta.sma(close, Short_Period) :
 Short_Moving_Average == 'EMA' ? ta.ema(close, Short_Period) :
 Short_Moving_Average == 'HMA' ? ta.sma(close, Short_Period) : na

Long_Moving_Average_Line = 
 Long_Moving_Average == 'SMA' ? ta.sma(close, Long_Period) :
 Long_Moving_Average == 'EMA' ? ta.ema(close, Long_Period) :
 Long_Moving_Average == 'HMA' ? ta.sma(close, Long_Period) : na
 
Base_order_Condition      = Triger_Type == "Over" ? ta.crossover(Short_Moving_Average_Line, Long_Moving_Average_Line) : ta.crossunder(Short_Moving_Average_Line, Long_Moving_Average_Line) // Buy when close crossing lower band

safety_order_deviation(index) => Price_deviation * math.pow(Safety_order_step_scale,  index - 1)

pd = Price_deviation
ss = Safety_order_step_scale

step(i) =>
 i == 1 ? pd :
 i == 2 ? pd + pd * ss :
 i == 3 ? pd + (pd + pd * ss) * ss :
 i == 4 ? pd + (pd + (pd + pd * ss) * ss) * ss : 
 i == 5 ? pd + (pd + (pd + (pd + pd * ss) * ss) * ss) * ss : 
 i == 6 ? pd + (pd + (pd + (pd + (pd + pd * ss) * ss) * ss) * ss) * ss : 
 i == 7 ? pd + (pd + (pd + (pd + (pd + (pd + pd * ss) * ss) * ss) * ss) * ss) * ss : 
 i == 8 ? pd + (pd + (pd + (pd + (pd + (pd + (pd + pd * ss) * ss) * ss) * ss) * ss) * ss) * ss : 
 i == 9 ? pd + (pd + (pd + (pd + (pd + (pd + (pd + (pd + pd * ss) * ss) * ss) * ss) * ss) * ss) * ss) * ss : 
 i == 10 ? pd + (pd + (pd + (pd + (pd + (pd + (pd + (pd + (pd + pd * ss) * ss) * ss) * ss) * ss) * ss) * ss) * ss) * ss : na

long_line(i) =>
 close[1] - close[1] * (step(i))


Safe_order_line(i) =>
 i == 0 ? ta.valuewhen(status_long, long_line(0), 0) :
 i == 1 ? ta.valuewhen(status_long, long_line(1), 0) :
 i == 2 ? ta.valuewhen(status_long, long_line(2), 0) :
 i == 3 ? ta.valuewhen(status_long, long_line(3), 0) :
 i == 4 ? ta.valuewhen(status_long, long_line(4), 0) :
 i == 5 ? ta.valuewhen(status_long, long_line(5), 0) :
 i == 6 ? ta.valuewhen(status_long, long_line(6), 0) :
 i == 7 ? ta.valuewhen(status_long, long_line(7), 0) :
 i == 8 ? ta.valuewhen(status_long, long_line(8), 0) : 
 i == 9 ? ta.valuewhen(status_long, long_line(9), 0) :
 i == 10 ? ta.valuewhen(status_long, long_line(10), 0) : na

TP_line = strategy.position_avg_price * (1 + Target_profit) 

SL_line = Safe_order_line(Max_safety_trades_count) * (1 - Stop_Loss)

safety_order_size(i) => Safety_order_size * math.pow(Safety_order_volume_scale, i - 1)


plot(Short_Moving_Average_Line, 'Short MA', color=color.new(color.white, 0), style=plot.style_line)
plot(Long_Moving_Average_Line, 'Long MA', color=color.new(color.green, 0), style=plot.style_line)
plot(strategy.position_size > 0 and Max_safety_trades_count >= 1 ? Safe_order_line(1) : na, 'Safety order1', color=color.new(#009688, 0), style=plot.style_linebr)
plot(strategy.position_size > 0 and Max_safety_trades_count >= 2 ? Safe_order_line(2) : na, 'Safety order2', color=color.new(#009688, 0), style=plot.style_linebr)
plot(strategy.position_size > 0 and Max_safety_trades_count >= 3 ? Safe_order_line(3) : na, 'Safety order3', color=color.new(#009688, 0), style=plot.style_linebr)
plot(strategy.position_size > 0 and Max_safety_trades_count >= 4 ? Safe_order_line(4) : na, 'Safety order4', color=color.new(#009688, 0), style=plot.style_linebr)
plot(strategy.position_size > 0 and Max_safety_trades_count >= 5 ? Safe_order_line(5) : na, 'Safety order5', color=color.new(#009688, 0), style=plot.style_linebr)
plot(strategy.position_size > 0 and Max_safety_trades_count >= 6 ? Safe_order_line(6) : na, 'Safety order6', color=color.new(#009688, 0), style=plot.style_linebr)
plot(strategy.position_size > 0 and Max_safety_trades_count >= 7 ? Safe_order_line(7) : na, 'Safety order7', color=color.new(#009688, 0), style=plot.style_linebr)
plot(strategy.position_size > 0 and Max_safety_trades_count >= 8 ? Safe_order_line(8) : na, 'Safety order8', color=color.new(#009688, 0), style=plot.style_linebr)
plot(strategy.position_size > 0 and Max_safety_trades_count >= 9 ? Safe_order_line(9) : na, 'Safety order9', color=color.new(#009688, 0), style=plot.style_linebr)
plot(strategy.position_size > 0 and Max_safety_trades_count >= 10 ? Safe_order_line(10) : na, 'Safety order10', color=color.new(#009688, 0), style=plot.style_linebr)
plot(strategy.position_size > 0 ? TP_line : na, 'Take Profit', color=color.new(color.orange, 0), style=plot.style_linebr)
plot(strategy.position_size > 0 ? SL_line : na, 'Safety', color=color.new(color.aqua, 0), style=plot.style_linebr)


currency = 
 Profit_currency == 'Quote (USDT)' ? ' USDT' :
 Profit_currency == 'Quote (BTC)'  ? ' BTC' :
 Profit_currency == 'Quote (BUSD)' ? ' BUSD' : na
 

if Base_order_Condition
    strategy.entry('Base order', strategy.long, qty=Base_order_size/close, when=Base_order_Condition and strategy.opentrades == 0,
     comment='BO' + ' - ' + str.tostring(Base_order_size) + str.tostring(currency))

for i = 1 to Max_safety_trades_count by 1
    i_s = str.tostring(i)
    strategy.entry('Safety order' + i_s, strategy.long, qty=safety_order_size(i)/close,
     limit=Safe_order_line(i), when=(strategy.opentrades <= i) and strategy.position_size > 0, 
     comment='SO' + i_s + ' - ' + str.tostring(safety_order_size(i))  + str.tostring(currency))


for i = 1 to Max_safety_trades_count by 1
    i_s = str.tostring(i)
    // strategy.close('Base order', when=shortCondition)
    // strategy.close('Safety order' + i_s, when=shortCondition)
    // strategy.cancel('Safety order' + i_s, when=shortCondition)
    strategy.cancel('SO' + i_s, when=ta.crossunder(low, SL_line) or ta.crossover(high, TP_line) or status_none)
    strategy.exit('TP/SL','Base order', limit=TP_line, stop=SL_line, comment = Safe_order_line(100) > close ? 'SL' + i_s + ' - ' +  str.tostring(Base_order_size) + str.tostring(currency) : 'TP' + i_s + ' - ' +  str.tostring(Base_order_size) + str.tostring(currency)) 
    strategy.exit('TP/SL','Safety order' + i_s, limit=TP_line, stop=SL_line, comment = Safe_order_line(100) > close ? 'SL' + i_s + ' - ' +  str.tostring(safety_order_size(i)) + str.tostring(currency) : 'TP' + i_s + ' - ' +  str.tostring(safety_order_size(i)) + str.tostring(currency)) 
    // strategy.cancel('TP/SP' + i_s, when=Base_order_Condition)
    // strategy.exit('Stop Loss','Base order', stop=SL_line)
    // strategy.exit('Stop Loss','Safety order' + i_s, stop=SL_line)
    
//----------------label A----------------//

bot_usage(i) =>
 i == 1 ? Base_order_size + safety_order_size(1) :
 i == 2 ? Base_order_size + safety_order_size(1) + safety_order_size(2) :
 i == 3 ? Base_order_size + safety_order_size(1) + safety_order_size(2) + safety_order_size(3) :
 i == 4 ? Base_order_size + safety_order_size(1) + safety_order_size(2) + safety_order_size(3) + safety_order_size(4) : 
 i == 5 ? Base_order_size + safety_order_size(1) + safety_order_size(2) + safety_order_size(3) + safety_order_size(4) + safety_order_size(5) :
 i == 6 ? Base_order_size + safety_order_size(1) + safety_order_size(2) + safety_order_size(3) + safety_order_size(4) + safety_order_size(5) + safety_order_size(6) : 
 i == 7 ? Base_order_size + safety_order_size(1) + safety_order_size(2) + safety_order_size(3) + safety_order_size(4) + safety_order_size(5) + safety_order_size(6) + safety_order_size(7) : 
 i == 8 ? Base_order_size + safety_order_size(1) + safety_order_size(2) + safety_order_size(3) + safety_order_size(4) + safety_order_size(5) + safety_order_size(6) + safety_order_size(7) + safety_order_size(8) : 
 i == 9 ? Base_order_size + safety_order_size(1) + safety_order_size(2) + safety_order_size(3) + safety_order_size(4) + safety_order_size(5) + safety_order_size(6) + safety_order_size(7) + safety_order_size(8) + safety_order_size(9) :
 i == 10 ? Base_order_size + safety_order_size(1) + safety_order_size(2) + safety_order_size(3) + safety_order_size(4) + safety_order_size(5) + safety_order_size(6) + safety_order_size(7) + safety_order_size(8) + safety_order_size(9) + safety_order_size(10) : na

equity = strategy.equity
bot_use = bot_usage(Max_safety_trades_count)
bot_dev = float(step(Max_safety_trades_count)) * 100
bot_ava = (bot_use / equity) * 100

string label_A = 
 'Balance                                      : ' + str.tostring(math.round(equity, 0), '###,###,###,###') + ' USDT' + '\n' + 
 'Max amount for bot usage           : ' + str.tostring(math.round(bot_use, 0), '###,###,###,###') + ' USDT' + '\n' + 
 'Max safety order price deviation : ' + str.tostring(math.round(bot_dev, 0), '##.##') + ' %' + '\n' + 
 '% of available balance                : ' + str.tostring(math.round(bot_ava, 0), '###,###,###,###') + ' %' 
 + (bot_ava > 100 ? '\n \n' +  '⚠ Warning! Bot will use amount greater than you have on exchange' : na) 


if status_long
    day_label = 
     label.new(
     x=time[1], 
     y=high * 1.03, 
     text=label_A, 
     xloc=xloc.bar_time, 
     yloc=yloc.price, 
     color=bot_ava > 100 ? color.new(color.yellow, 0) : color.new(color.black, 50), 
     style=label.style_label_lower_right, 
     textcolor=bot_ava > 100 ? color.new(color.red, 0) : color.new(color.silver, 0), 
     size=size.normal, 
     textalign=text.align_left)