Estratégia de combinação de indicadores Bollinger Bands e RSI


Data de criação: 2023-10-25 14:47:21 última modificação: 2023-10-25 14:47:21
cópia: 0 Cliques: 645
1
focar em
1621
Seguidores

Estratégia de combinação de indicadores Bollinger Bands e RSI

Visão geral

A estratégia baseia-se principalmente na combinação de indicadores de Brin e RSI para julgar os sinais de negociação, e é uma estratégia de combinação típica. Utiliza integralmente os benefícios de diferentes indicadores para determinar a direção da tendência através da faixa de Brin, o RSI detecta sobrecompra e sobrevenda, para entrar e sair.

Princípio da estratégia

  1. Usando o meio, o alto e o baixo da faixa de Brin para avaliar o movimento atual do preço das ações. Quando o preço quebra o caminho acima, é considerado como entrando em uma situação de bullish, e quando o preço quebra o caminho abaixo, é considerado como entrando em uma situação de bearish.

  2. A largura de banda de Brin (diferença entre a linha superior e a linha inferior) pode refletir a taxa de flutuação atual do mercado. Quando a largura de banda de Brin aumenta, a flutuação aumenta, e o RSI pode detectar melhor os casos de sobrecompra e sobrevenda.

  3. O indicador RSI julga a tendência de sobrecompra e sobrevenda. Se o RSI estiver acima de 70, é uma zona de sobrecompra, e se estiver abaixo de 30, é uma zona de sobrevenda.

  4. Sinais de negociação específicos: (1) Sinais de alarme: o preço entrou no caminho e o RSI não superou (RSI menor que 70) (2) Sinais de baixa: o preço entrou em queda e o RSI não superou (RSI maior que 30)

  5. Exit Stop Loss: A negociação de bullish termina se o RSI for abaixo de 70; a negociação de bearish termina se o RSI for acima de 30.

Análise de vantagens

A estratégia tem as seguintes vantagens:

  1. A vantagem de integrar vários indicadores é que a informação é mais abrangente e os sinais são mais confiáveis.

  2. A utilização da faixa de Bryn para determinar a direção geral da tendência, apoiar a massa e entender a tendência.

  3. O indicador RSI julga a sobrecompra e a sobrevenda locais, evitando ainda mais riscos desnecessários.

  4. O mecanismo de prevenção de prejuízos é rigoroso e ajuda a reduzir os prejuízos.

Análise de Riscos

A estratégia também apresenta os seguintes riscos:

  1. O indicador de correlação de tendências (BRI) e o RSI podem falhar, o que pode levar a erros nos sinais de negociação.

  2. Apesar das medidas de parada, a configuração inadequada do ponto de parada ainda pode causar grandes perdas.

  3. A frequência excessiva de transações aumenta as taxas de transação e os custos de deslizamento.

  4. PARAMETERS Otimização inadequada pode levar a um excesso de compatibilidade.

Direção de otimização

A estratégia pode ser melhorada em vários aspectos:

  1. Testar diferentes combinações de parâmetros de indicadores para encontrar o parâmetro otimizado.

  2. Aumentar a flexibilidade dos métodos de stop loss, como ADDR/ATR stop loss, stop loss móvel, etc.

  3. Adicionar estratégias de gerenciamento de posições, como posições fixas, Martingale, etc.

  4. Combinação de mais indicadores de filtragem de sinais, como volume de transação e energia.

  5. Otimizar a auto-adaptação de parâmetros usando aprendizado de máquina.

  6. Otimizar o tempo de entrada, e depois de um sinal de confirmação de tendência.

Resumir

A estratégia, em geral, é uma estratégia típica de combinação de vários indicadores. Integra os seus respectivos pontos fortes nas faixas Brin e RSI, evitando, ao mesmo tempo, o risco de sobrevenda local e de sobrevenda ao capturar a tendência.

Código-fonte da estratégia
/*backtest
start: 2023-09-24 00:00:00
end: 2023-10-24 00:00:00
period: 2h
basePeriod: 15m
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
*/

// This source code is subject to the terms of the Mozilla Public License 2.0 at https://mozilla.org/MPL/2.0/
// © evillalobos1123

//@version=5
strategy("Villa Dinamic Pivot Supertrend Strategy", overlay=true, calc_on_every_tick = true, default_qty_type = strategy.fixed)

//INPUTS

ema_b = input.bool(false, "Use Simple EMA Filter", group = "Strategy Inputs")
ema_b_ang = input.bool(true, "Use DEMA Angle Filter", group = "Strategy Inputs")
dema_b = input.bool(true, "Use DEMA Filter", group = "Strategy Inputs")
st_sig = input.bool(false, "Take Every Supertrend Signal" , group = "Strategy Inputs")
take_p = input.bool(true, "Stop Loss at Supertrend", group = "Strategy Inputs")
din_tp = input.bool(false, "2 Steps Take Profit", group = "Strategy Inputs")
move_sl = input.bool(true, "Move SL", group = "Strategy Inputs")
sl_atr = input.float(2.5, "Stop Loss ATR Multiplier", group = "Strategy Inputs")
tp_atr = input.float(4, "Take Profit ATR Multiplier", group = "Strategy Inputs")
din_tp_qty = input.int(50, "2 Steps TP qty%", group = "Strategy Inputs")
dema_a_filter = input.float(0, "DEMA Angle Threshold (+ & -)", group = "Strategy Inputs")
dema_a_look = input.int(1, "DEMA Angle Lookback", group = "Strategy Inputs")
dr_test = input.string("Backtest", "Testing", options = ["Backtest", "Forwardtest", "All"], group = "Strategy Inputs")

not_in_trade = strategy.position_size == 0

//Backtesting date range

start_year = input.int(2021, "Backtesting start year", group = "BT Date Range")
start_month = input.int(1, "Backtesting start month", group = "BT Date Range")
start_date = input.int(1, "Backtesting start day", group = "BT Date Range")
end_year = input.int(2021, "Backtesting end year", group = "BT Date Range")
end_month = input.int(12, "Backtesting end month", group = "BT Date Range")
end_date = input.int(31, "Backtesting end day", group = "BT Date Range")

bt_date_range = (time >= timestamp(syminfo.timezone, start_year,
         start_month, start_date, 0, 0)) and
     (time < timestamp(syminfo.timezone, end_year, end_month, end_date, 0, 0))
     

//Forward testing date range

start_year_f = input.int(2022, "Forwardtesting start year", group = "FT Date Range")
start_month_f = input.int(1, "Forwardtesting start month", group = "FT Date Range")
start_date_f = input.int(1, "Forwardtesting start day", group = "FT Date Range")
end_year_f = input.int(2022, "Forwardtesting end year", group = "FT Date Range")
end_month_f = input.int(03, "Forwardtesting end month", group = "FT Date Range")
end_date_f = input.int(26, "Forwardtesting end day", group = "FT Date Range")

ft_date_range = (time >= timestamp(syminfo.timezone, start_year_f,
         start_month_f, start_date_f, 0, 0)) and
     (time < timestamp(syminfo.timezone, end_year_f, end_month_f, end_date_f, 0, 0))


//date condition
date_range_cond = if dr_test == "Backtest"
    bt_date_range
else if dr_test == "Forwardtest"
    ft_date_range
else
    true
    

//INDICATORS

//PIVOT SUPERTREND
prd = input.int(2, "PVT ST Pivot Point Period", group = "Pivot Supertrend")
Factor=input.float(3, "PVT ST ATR Factor", group = "Pivot Supertrend")
Pd=input.int(9 ,  "PVT ST ATR Period", group = "Pivot Supertrend")

// get Pivot High/Low
float ph = ta.pivothigh(prd, prd)
float pl = ta.pivotlow(prd, prd)

// calculate the Center line using pivot points
var float center = na
float lastpp = ph ? ph : pl ? pl : na
if lastpp
    if na(center)
        center := lastpp
    else
        //weighted calculation
        center := (center * 2 + lastpp) / 3

// upper/lower bands calculation
Up = center - (Factor * ta.atr(Pd))
Dn = center + (Factor * ta.atr(Pd))

// get the trend
float TUp = na
float TDown = na
Trend = 0
TUp := close[1] > TUp[1] ? math.max(Up, TUp[1]) : Up
TDown := close[1] < TDown[1] ? math.min(Dn, TDown[1]) : Dn
Trend := close > TDown[1] ? 1: close < TUp[1]? -1: nz(Trend[1], 1)
Trailingsl = Trend == 1 ? TUp : TDown

// check and plot the signals
bsignal = Trend == 1 and Trend[1] == -1
ssignal = Trend == -1 and Trend[1] == 1

//get S/R levels using Pivot Points
float resistance = na
float support = na
support := pl ? pl : support[1]
resistance := ph ? ph : resistance[1]

//DEMA

dema_ln = input.int(200, "DEMA Len", group = 'D-EMAs')
dema_src = input.source(close, "D-EMAs Source", group = 'D-EMAs')
ema_fd = ta.ema(dema_src, dema_ln)
dema = (2*ema_fd)-(ta.ema(ema_fd,dema_ln))

//EMA

ema1_l = input.int(21, "EMA 1 Len", group = 'D-EMAs')
ema2_l = input.int(50, "EMA 2 Len", group = 'D-EMAs')
ema3_l = input.int(200, "EMA 3 Len", group = 'D-EMAs')

ema1 = ta.ema(dema_src, ema1_l)
ema2 = ta.ema(dema_src, ema2_l)
ema3 = ta.ema(dema_src, ema3_l)

//Supertrend
Periods = input.int(21, "ST ATR Period", group = "Normal Supertrend")
src_st = input.source(hl2, "ST Supertrend Source", group = "Normal Supertrend")
Multiplier = input.float(2.0 , "ST ATR Multiplier", group = "Normal Supertrend")
changeATR= true
atr2 = ta.sma(ta.tr, Periods)
atr3= changeATR ? ta.atr(Periods) : atr2
up=src_st-(Multiplier*atr3)
up1 = nz(up[1],up)
up := close[1] > up1 ? math.max(up,up1) : up
dn=src_st+(Multiplier*atr3)
dn1 = nz(dn[1], dn)
dn := close[1] < dn1 ? math.min(dn, dn1) : dn
trend = 1
trend := nz(trend[1], trend)
trend := trend == -1 and close > dn1 ? 1 : trend == 1 and close < up1 ? -1 : trend
buySignal = trend == 1 and trend[1] == -1
sellSignal = trend == -1 and trend[1] == 1

//ATR

atr = ta.atr(14)

///CONDITIONS

//BUY 
/// ema simple
ema_cond_b = if ema_b
    ema1 > ema2 and ema2 > ema3
else
    true

///ema angle

dema_angle_rad = math.atan((dema - dema[dema_a_look])/0.0001)
dema_angle = dema_angle_rad * (180/math.pi)

dema_ang_cond_b = if ema_b_ang
    if dema_angle >= dema_a_filter
        true
    else
        false
else
    true
    


///ema distance

dema_cond_b = if dema_b
    close > dema
else 
    true
    

//supertrends
///if pivot buy sig or (st buy sig and pivot. trend = 1)

pvt_cond_b = bsignal

st_cond_b = if st_sig
    buySignal and Trend == 1
else
    false

st_entry_cond = pvt_cond_b or st_cond_b

///stop loss tp

sl_b = if take_p
    if trend == 1
        up
    else
        close - (atr * sl_atr)
else
    close - (atr * sl_atr)

tp_b = if take_p
    if trend == 1
        close + ((close - up) * (tp_atr / sl_atr))
    else
        close + (atr * tp_atr)
else
    close + (atr * tp_atr)
    
//position size 
init_cap = strategy.equity
pos_size_b = math.round((init_cap * .01) / (close - sl_b))
ent_price = strategy.opentrades.entry_price(strategy.opentrades - 1)
var sl_b_n = 0.0
var tp_b_n = 0.0
longCondition = (ema_cond_b and dema_cond_b and dema_ang_cond_b and st_entry_cond and date_range_cond and not_in_trade)
if (longCondition)
    
    strategy.entry("Long", strategy.long, qty = pos_size_b)
    sl_b_n := sl_b
    tp_b_n := tp_b
    ent_price := strategy.opentrades.entry_price(strategy.opentrades - 1)

if (up[1] < ent_price and up >= ent_price and trend[0] == 1)
    if din_tp
        strategy.close("Long", qty_percent = din_tp_qty)
    if move_sl
        sl_b_n := ent_price

strategy.exit("Exit", "Long", stop =sl_b_n, limit = tp_b_n)   


    

//sell

///ema simple
ema_cond_s = if ema_b
    ema1 < ema2 and ema2 < ema3
else
    true

//ema distance
dema_cond_s = if dema_b
    close < dema
else 
    true

//dema angle
dema_ang_cond_s = if ema_b_ang
    if dema_angle <= (dema_a_filter * -1)
        true
    else
        false
else
    true

//supertrends
///if pivot buy sig or (st buy sig and pivot. trend = 1)

pvt_cond_s = ssignal

st_cond_s = if st_sig
    sellSignal and Trend == -1
else
    false

st_entry_cond_s = pvt_cond_s or st_cond_s

///stop loss tp


sl_s = if take_p
    if trend == -1
        dn
    else
        close + (atr * sl_atr)
else
    close + (atr * sl_atr)

tp_s = if take_p
    if trend == -1
        close - ((dn - close) * (tp_atr / sl_atr))
    else
        close - (atr * tp_atr)
else
    close - (atr * tp_atr)


shortCondition = (ema_cond_s and dema_cond_s and dema_ang_cond_s and st_entry_cond_s and not_in_trade)

pos_size_s = math.round((init_cap * .01) / (sl_s - close))
var sl_s_n = 0.0
var tp_s_n = 0.0
if (shortCondition)
    strategy.entry("Short", strategy.short, qty = pos_size_s)
    sl_s_n := sl_s
    tp_s_n := tp_s
    
if (dn[1] > ent_price and dn <= ent_price and trend[0] == -1)
    if din_tp
        strategy.close("Short", qty_percent = din_tp_qty)
    if move_sl
        sl_s_n := ent_price

strategy.exit("Exit", "Short", stop = sl_s_n, limit = tp_s_n)