Estratégia de negociação quantitativa DCA ponderada por elementos progressivos


Data de criação: 2023-11-16 11:32:12 última modificação: 2023-11-16 11:32:12
cópia: 0 Cliques: 767
1
focar em
1617
Seguidores

Estratégia de negociação quantitativa DCA ponderada por elementos progressivos

Visão geral

A estratégia de negociação quantitativa de DCA com elementos progressivos é uma estratégia de negociação quantitativa que combina o sinal de acionamento do indicador de média móvel com o mecanismo de média de custo de dólar gradualmente ponderado. A estratégia visa obter ganhos mais estáveis em mercados mais orientados pela tendência, avaliando a tendência e comparando os custos.

Princípios

A estratégia consiste em três partes principais:

  1. O julgamento de sinais de entrada

Usar a média móvel rápida e a média móvel lenta como um sinal de entrada. Dependendo da configuração do usuário, pode ser escolhido o SMA, EMA ou HMA como a média rápida. Um sinal de compra é gerado quando a média rápida é quebrada pela média lenta abaixo; um sinal de venda é gerado quando a média rápida é quebrada pela média lenta acima.

  1. Aumento progressivo do DCA

Depois de um sinal de compra ser acionado, a estratégia abre imediatamente uma posição para estabelecer uma posição de base. Se o preço continuar a cair, a estratégia aumentará a posição de segurança subsequente de forma gradual. O preço de cada nova posição de segurança será reduzido de acordo com o preço da posição de segurança anterior.

Assim, por meio de adição gradual de posições, é possível atingir um certo equilíbrio de custos, garantindo que os riscos de transação sejam controlados e, ao mesmo tempo, obter um preço de custo mais favorável.

  1. Parar de perder

A estratégia opta por parar quando o preço sobe e ultrapassa a linha de parada; quando o preço desce e ultrapassa a linha de parada, a estratégia opta por parar.

A linha de parada é fixada como a proporção fixa de 1 + o preço médio de transação da posição base.

A linha de stop-loss é a flutuação do preço com a última posição de segurança. O sinal de stop-loss é confirmado abaixo de uma certa proporção do preço de transação com base na última posição de segurança.

Vantagens

  1. A estratégia é mais estável quando combinada com o discernimento de tendências e a repartição dos custos

O discernimento de tendências evita o mercado de turbulência sem direção, e os custos podem ser compartilhados para obter melhores custos em tendências.

  1. Riscos controlados com a acumulação de ativos

Cada posição equilibrada tem uma certa amplitude de tamanho, e as posições subsequentes têm uma certa exigência de retirada, para controlar o risco.

  1. Estratégias de monitorização em tempo real sobre o uso de fundos

O código adiciona a etiqueta de monitoramento em tempo real, permitindo que os usuários saibam claramente o limite máximo de capital que a estratégia ocupa, evitando o uso excessivo que leva ao fortalecimento da posição.

  1. Flexão de stop loss nas posições

As posições de base e as posições de segurança podem, respectivamente, travar perdas, encerrar lucros e controlar riscos.

Risco e otimização

  1. A forte volatilidade dos preços pode levar a uma série de aumentos de posição

Em situações de forte oscilação de preços, pode-se desencadear várias adições de posição, aumentando assim os prejuízos. Pode-se reduzir o número de adições de posição, aumentando adequadamente as exigências de retirada entre as posições de segurança subsequentes.

  1. Seleção de parâmetros de linha média precisa de otimização

Os parâmetros da linha média afetam diretamente o tempo de entrada, e diferentes variedades precisam de testes para determinar os parâmetros apropriados.

  1. A proporção de suspensão de dano precisa ser testada e otimizada

A proporção de stop loss está relacionada com a taxa de retorno e o controle de retirada, e a configuração precisa ser otimizada por meio de dados de retrospecção.

  1. Condições de liquidação obrigatória podem ser definidas com base em retirada ou tempo

Pode-se testar a adição de condições de posição parada obrigatória com o máximo de retirada ou tempo de detenção acima do limiar, para controlar ainda mais o risco.

Resumir

A estratégia de negociação quantitativa de DCA com elementos progressivos combina os benefícios do discernimento de tendências com a compensação dos custos, permitindo obter um rendimento estável em situações de forte tendência. A estratégia pode ser aplicada ao hedge fund, ao CTA e à concepção de algumas estratégias de resistência.

Código-fonte da estratégia
/*backtest
start: 2022-11-09 00:00:00
end: 2023-11-15 00:00:00
period: 1d
basePeriod: 1h
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
*/

// This source code is subject to the terms of the Mozilla Public License 2.0 at https://mozilla.org/MPL/2.0/
// © MGTG

//@version=5
Strategy = input.string('Long', options=['Long'], group='Strategy', inline='1',
 tooltip='Long bots profit when asset prices rise, Short bots profit when asset prices fall'
 + '\n\n' + 'Please note: to run a Short bot on a spot exchange account, you need to own the asset you want to trade. The bot will sell the asset at the current chart price and buy it back at a lower price - the profit made is actually trapped equity released from an asset you own that is declining in value.')

Profit_currency = input.string('Quote (USDT)', 'Profit currency', options=['Quote (USDT)', 'Quote (BTC)', 'Quote (BUSD)'], group='Strategy', inline='1')
Base_order_size = input.int(10, 'Base order Size', group='Strategy', inline='2', 
 tooltip='The Base Order is the first order the bot will create when starting a new deal.')
Safety_order_size = input.int(20, 'Safety order Size', group='Strategy', inline='2',
 tooltip="Enter the amount of funds your Safety Orders will use to Average the cost of the asset being traded, this can help your bot to close deals faster with more profit. Safety Orders are also known as Dollar Cost Averaging and help when prices moves in the opposite direction to your bot's take profit target.")

Triger_Type = input.string('Over', 'Entry at Cross Over / Under', options=['Over', 'Under'], group='Deal start condition > Trading View custom signal', inline='1',
 tooltip='Deal start condition decision')

Short_Moving_Average  = input.string('SMA', 'Short Moving Average', group='Deal start condition > Trading View custom signal', inline='2',
 options=["SMA", "EMA", "HMA"])
Short_Period         = input.int(5, 'Period', group='Deal start condition > Trading View custom signal', inline='2')
Long_Moving_Average  = input.string('HMA', 'Long Moving Average', group='Deal start condition > Trading View custom signal', inline='3',
 options=["SMA", "EMA", "HMA"])

Long_Period          = input.int(50, 'Period', group='Deal start condition > Trading View custom signal', inline='3')

Target_profit = input.float(1.5, 'Target profit (%)', step=0.05, group='Take profit / Stop Loss', inline='1') * 0.01
Stop_Loss = input.int(15, 'Stop Loss (%)', group='Take profit / Stop Loss', inline='1',
 tooltip='This is the percentage that price needs to move in the opposite direction to your take profit target, at which point the bot will execute a Market Order on the exchange account to close the deal for a smaller loss than keeping the deal open.'
 + '\n' + 'Please note, the Stop Loss is calculated from the price the Safety Order at on the exchange account and not the Dollar Cost Average price.') * 0.01

Max_safety_trades_count = input.int(10, 'Max safety trades count', maxval=10, group='Safety orders', inline='1')
Price_deviation = input.float(0.4, 'Price deviation to open safety orders (% from initial order)', step=0.01, group='Safety orders', inline='2') * 0.01
Safety_order_volume_scale = input.float(1.8, 'Safety order volume scale', step=0.01, group='Safety orders', inline='3')
Safety_order_step_scale = input.float(1.19, 'Safety order step scale', step=0.01, group='Safety orders', inline='3')

// daily_volume  = input.int(500, "Don't start deal(s) if the daily volume is less than", group='Advanced settings', inline='1')
// Minimum_price  = input.int(500, "Minimum price to open deal", group='Advanced settings', inline='1')
// Maximum_price  = input.int(500, "Maximum price to open deal", group='Advanced settings', inline='1')

// Close_deal_after_timeout  = input.int(5, "Close deal after timeout (Hrs)", group='Advanced settings', inline='1')

initial_capital = 8913

strategy(
 title='3Commas Visible DCA Strategy', 
 overlay=true, 
 initial_capital=initial_capital, 
 pyramiding=11, 
 process_orders_on_close=true, 
 commission_type=strategy.commission.percent, 
 commission_value=0.01, 
 max_bars_back=5000, 
 max_labels_count=50)


// Position
status_none  = strategy.position_size == 0
status_long  = strategy.position_size[1] == 0 and strategy.position_size > 0
status_long_offset  = strategy.position_size[2] == 0 and strategy.position_size[1] > 0
status_short = strategy.position_size[1] == 0 and strategy.position_size < 0
status_increase = strategy.opentrades[1] < strategy.opentrades

Short_Moving_Average_Line = 
 Short_Moving_Average == 'SMA' ? ta.sma(close, Short_Period) :
 Short_Moving_Average == 'EMA' ? ta.ema(close, Short_Period) :
 Short_Moving_Average == 'HMA' ? ta.sma(close, Short_Period) : na

Long_Moving_Average_Line = 
 Long_Moving_Average == 'SMA' ? ta.sma(close, Long_Period) :
 Long_Moving_Average == 'EMA' ? ta.ema(close, Long_Period) :
 Long_Moving_Average == 'HMA' ? ta.sma(close, Long_Period) : na
 
Base_order_Condition      = Triger_Type == "Over" ? ta.crossover(Short_Moving_Average_Line, Long_Moving_Average_Line) : ta.crossunder(Short_Moving_Average_Line, Long_Moving_Average_Line) // Buy when close crossing lower band

safety_order_deviation(index) => Price_deviation * math.pow(Safety_order_step_scale,  index - 1)

pd = Price_deviation
ss = Safety_order_step_scale

step(i) =>
 i == 1 ? pd :
 i == 2 ? pd + pd * ss :
 i == 3 ? pd + (pd + pd * ss) * ss :
 i == 4 ? pd + (pd + (pd + pd * ss) * ss) * ss : 
 i == 5 ? pd + (pd + (pd + (pd + pd * ss) * ss) * ss) * ss : 
 i == 6 ? pd + (pd + (pd + (pd + (pd + pd * ss) * ss) * ss) * ss) * ss : 
 i == 7 ? pd + (pd + (pd + (pd + (pd + (pd + pd * ss) * ss) * ss) * ss) * ss) * ss : 
 i == 8 ? pd + (pd + (pd + (pd + (pd + (pd + (pd + pd * ss) * ss) * ss) * ss) * ss) * ss) * ss : 
 i == 9 ? pd + (pd + (pd + (pd + (pd + (pd + (pd + (pd + pd * ss) * ss) * ss) * ss) * ss) * ss) * ss) * ss : 
 i == 10 ? pd + (pd + (pd + (pd + (pd + (pd + (pd + (pd + (pd + pd * ss) * ss) * ss) * ss) * ss) * ss) * ss) * ss) * ss : na

long_line(i) =>
 close[1] - close[1] * (step(i))


Safe_order_line(i) =>
 i == 0 ? ta.valuewhen(status_long, long_line(0), 0) :
 i == 1 ? ta.valuewhen(status_long, long_line(1), 0) :
 i == 2 ? ta.valuewhen(status_long, long_line(2), 0) :
 i == 3 ? ta.valuewhen(status_long, long_line(3), 0) :
 i == 4 ? ta.valuewhen(status_long, long_line(4), 0) :
 i == 5 ? ta.valuewhen(status_long, long_line(5), 0) :
 i == 6 ? ta.valuewhen(status_long, long_line(6), 0) :
 i == 7 ? ta.valuewhen(status_long, long_line(7), 0) :
 i == 8 ? ta.valuewhen(status_long, long_line(8), 0) : 
 i == 9 ? ta.valuewhen(status_long, long_line(9), 0) :
 i == 10 ? ta.valuewhen(status_long, long_line(10), 0) : na

TP_line = strategy.position_avg_price * (1 + Target_profit) 

SL_line = Safe_order_line(Max_safety_trades_count) * (1 - Stop_Loss)

safety_order_size(i) => Safety_order_size * math.pow(Safety_order_volume_scale, i - 1)


plot(Short_Moving_Average_Line, 'Short MA', color=color.new(color.white, 0), style=plot.style_line)
plot(Long_Moving_Average_Line, 'Long MA', color=color.new(color.green, 0), style=plot.style_line)
plot(strategy.position_size > 0 and Max_safety_trades_count >= 1 ? Safe_order_line(1) : na, 'Safety order1', color=color.new(#009688, 0), style=plot.style_linebr)
plot(strategy.position_size > 0 and Max_safety_trades_count >= 2 ? Safe_order_line(2) : na, 'Safety order2', color=color.new(#009688, 0), style=plot.style_linebr)
plot(strategy.position_size > 0 and Max_safety_trades_count >= 3 ? Safe_order_line(3) : na, 'Safety order3', color=color.new(#009688, 0), style=plot.style_linebr)
plot(strategy.position_size > 0 and Max_safety_trades_count >= 4 ? Safe_order_line(4) : na, 'Safety order4', color=color.new(#009688, 0), style=plot.style_linebr)
plot(strategy.position_size > 0 and Max_safety_trades_count >= 5 ? Safe_order_line(5) : na, 'Safety order5', color=color.new(#009688, 0), style=plot.style_linebr)
plot(strategy.position_size > 0 and Max_safety_trades_count >= 6 ? Safe_order_line(6) : na, 'Safety order6', color=color.new(#009688, 0), style=plot.style_linebr)
plot(strategy.position_size > 0 and Max_safety_trades_count >= 7 ? Safe_order_line(7) : na, 'Safety order7', color=color.new(#009688, 0), style=plot.style_linebr)
plot(strategy.position_size > 0 and Max_safety_trades_count >= 8 ? Safe_order_line(8) : na, 'Safety order8', color=color.new(#009688, 0), style=plot.style_linebr)
plot(strategy.position_size > 0 and Max_safety_trades_count >= 9 ? Safe_order_line(9) : na, 'Safety order9', color=color.new(#009688, 0), style=plot.style_linebr)
plot(strategy.position_size > 0 and Max_safety_trades_count >= 10 ? Safe_order_line(10) : na, 'Safety order10', color=color.new(#009688, 0), style=plot.style_linebr)
plot(strategy.position_size > 0 ? TP_line : na, 'Take Profit', color=color.new(color.orange, 0), style=plot.style_linebr)
plot(strategy.position_size > 0 ? SL_line : na, 'Safety', color=color.new(color.aqua, 0), style=plot.style_linebr)


currency = 
 Profit_currency == 'Quote (USDT)' ? ' USDT' :
 Profit_currency == 'Quote (BTC)'  ? ' BTC' :
 Profit_currency == 'Quote (BUSD)' ? ' BUSD' : na
 

if Base_order_Condition
    strategy.entry('Base order', strategy.long, qty=Base_order_size/close, when=Base_order_Condition and strategy.opentrades == 0,
     comment='BO' + ' - ' + str.tostring(Base_order_size) + str.tostring(currency))

for i = 1 to Max_safety_trades_count by 1
    i_s = str.tostring(i)
    strategy.entry('Safety order' + i_s, strategy.long, qty=safety_order_size(i)/close,
     limit=Safe_order_line(i), when=(strategy.opentrades <= i) and strategy.position_size > 0, 
     comment='SO' + i_s + ' - ' + str.tostring(safety_order_size(i))  + str.tostring(currency))


for i = 1 to Max_safety_trades_count by 1
    i_s = str.tostring(i)
    // strategy.close('Base order', when=shortCondition)
    // strategy.close('Safety order' + i_s, when=shortCondition)
    // strategy.cancel('Safety order' + i_s, when=shortCondition)
    strategy.cancel('SO' + i_s, when=ta.crossunder(low, SL_line) or ta.crossover(high, TP_line) or status_none)
    strategy.exit('TP/SL','Base order', limit=TP_line, stop=SL_line, comment = Safe_order_line(100) > close ? 'SL' + i_s + ' - ' +  str.tostring(Base_order_size) + str.tostring(currency) : 'TP' + i_s + ' - ' +  str.tostring(Base_order_size) + str.tostring(currency)) 
    strategy.exit('TP/SL','Safety order' + i_s, limit=TP_line, stop=SL_line, comment = Safe_order_line(100) > close ? 'SL' + i_s + ' - ' +  str.tostring(safety_order_size(i)) + str.tostring(currency) : 'TP' + i_s + ' - ' +  str.tostring(safety_order_size(i)) + str.tostring(currency)) 
    // strategy.cancel('TP/SP' + i_s, when=Base_order_Condition)
    // strategy.exit('Stop Loss','Base order', stop=SL_line)
    // strategy.exit('Stop Loss','Safety order' + i_s, stop=SL_line)
    
//----------------label A----------------//

bot_usage(i) =>
 i == 1 ? Base_order_size + safety_order_size(1) :
 i == 2 ? Base_order_size + safety_order_size(1) + safety_order_size(2) :
 i == 3 ? Base_order_size + safety_order_size(1) + safety_order_size(2) + safety_order_size(3) :
 i == 4 ? Base_order_size + safety_order_size(1) + safety_order_size(2) + safety_order_size(3) + safety_order_size(4) : 
 i == 5 ? Base_order_size + safety_order_size(1) + safety_order_size(2) + safety_order_size(3) + safety_order_size(4) + safety_order_size(5) :
 i == 6 ? Base_order_size + safety_order_size(1) + safety_order_size(2) + safety_order_size(3) + safety_order_size(4) + safety_order_size(5) + safety_order_size(6) : 
 i == 7 ? Base_order_size + safety_order_size(1) + safety_order_size(2) + safety_order_size(3) + safety_order_size(4) + safety_order_size(5) + safety_order_size(6) + safety_order_size(7) : 
 i == 8 ? Base_order_size + safety_order_size(1) + safety_order_size(2) + safety_order_size(3) + safety_order_size(4) + safety_order_size(5) + safety_order_size(6) + safety_order_size(7) + safety_order_size(8) : 
 i == 9 ? Base_order_size + safety_order_size(1) + safety_order_size(2) + safety_order_size(3) + safety_order_size(4) + safety_order_size(5) + safety_order_size(6) + safety_order_size(7) + safety_order_size(8) + safety_order_size(9) :
 i == 10 ? Base_order_size + safety_order_size(1) + safety_order_size(2) + safety_order_size(3) + safety_order_size(4) + safety_order_size(5) + safety_order_size(6) + safety_order_size(7) + safety_order_size(8) + safety_order_size(9) + safety_order_size(10) : na

equity = strategy.equity
bot_use = bot_usage(Max_safety_trades_count)
bot_dev = float(step(Max_safety_trades_count)) * 100
bot_ava = (bot_use / equity) * 100

string label_A = 
 'Balance                                      : ' + str.tostring(math.round(equity, 0), '###,###,###,###') + ' USDT' + '\n' + 
 'Max amount for bot usage           : ' + str.tostring(math.round(bot_use, 0), '###,###,###,###') + ' USDT' + '\n' + 
 'Max safety order price deviation : ' + str.tostring(math.round(bot_dev, 0), '##.##') + ' %' + '\n' + 
 '% of available balance                : ' + str.tostring(math.round(bot_ava, 0), '###,###,###,###') + ' %' 
 + (bot_ava > 100 ? '\n \n' +  '⚠ Warning! Bot will use amount greater than you have on exchange' : na) 


if status_long
    day_label = 
     label.new(
     x=time[1], 
     y=high * 1.03, 
     text=label_A, 
     xloc=xloc.bar_time, 
     yloc=yloc.price, 
     color=bot_ava > 100 ? color.new(color.yellow, 0) : color.new(color.black, 50), 
     style=label.style_label_lower_right, 
     textcolor=bot_ava > 100 ? color.new(color.red, 0) : color.new(color.silver, 0), 
     size=size.normal, 
     textalign=text.align_left)