Estrategia de seguimiento de tendencias RSI


Fecha de creación: 2023-11-16 15:33:40 Última modificación: 2023-11-16 15:33:40
Copiar: 2 Número de Visitas: 832
1
Seguir
1617
Seguidores

Estrategia de seguimiento de tendencias RSI

Descripción general

La estrategia combina el indicador RSI y el promedio móvil ponderado para realizar operaciones de seguimiento de tendencia. Se mantiene a la baja cuando el RSI es superior a 60 y a la baja cuando el RSI es inferior a 40, y se requiere que el promedio móvil cumpla con las condiciones de tendencia. Se utiliza el RSI de 40 ciclos como indicador de seguimiento de tendencia.

Principio de estrategia

La estrategia primero calcula el RSI y la media móvil ponderada. El RSI tiene una longitud de 20 ciclos y la media móvil ponderada tiene una longitud de 20, con un ajuste de peso más grande para reducir el impacto de las fluctuaciones a corto plazo. Se ejecutan operaciones múltiples cuando el RSI es mayor que 60 y el cambio en la media móvil ponderada es menor que 1%, se ejecutan operaciones en blanco cuando el RSI es menor que 40 y el cambio en la media móvil ponderada es mayor que 1%.

Después de hacer más de la baja, se establecerá al mismo tiempo un stop loss y un stop stop móvil. El stop loss está a 3 veces el ATR del precio actual; el stop stop móvil se activa inicialmente en el precio a 4 veces el ATR del precio actual, y luego se mueve con una amplitud del 3%. Cuando el precio toca el stop loss o el precio de activación del stop stop móvil, se cierra la posición correspondiente.

La estrategia también incorpora reglas de administración de fondos para ajustar la posición a través de la ley de proporciones fijas. Cada vez que los beneficios o las pérdidas alcanzan una cantidad fija, se aumenta o disminuye el volumen de operaciones en una cantidad fija.

Análisis de las ventajas

  • Utiliza el RSI para determinar tendencias y seguirlas de manera eficiente
  • Las medias móviles ponderadas reducen el impacto de las fluctuaciones a corto plazo con diferentes ponderaciones para evitar que sean ajustadas.
  • El uso de paradas móviles para maximizar los beneficios
  • La gestión de fondos de proporción fija y el control efectivo de los riesgos

La ventaja general de esta estrategia es la capacidad de seguir la tendencia y, al mismo tiempo, tomar medidas de stop loss y de suspensión móvil para controlar el riesgo, lo que permite obtener mejores ganancias en situaciones fuertes.

Análisis de riesgos

  • El indicador RSI emite señales erróneas que pueden conducir a operaciones innecesarias
  • La ruptura de los paros o el movimiento de los paros se forzará a detenerse y no se podrá seguir la tendencia
  • Las reglas de administración de fondos pueden ser demasiado radicales y generar grandes pérdidas

El principal riesgo de esta estrategia radica en la fiabilidad del indicador RSI y en si el stop loss móvil es razonable. Si los parámetros se establecen incorrectamente, puede provocar pérdidas innecesarias de posición baja o por encima de la capacidad de soportabilidad. Además, puede ser forzado a parar cuando se rompe el stop loss o el precio de parada, perdiendo la oportunidad de seguir la tendencia.

Se puede considerar la optimización de los parámetros del RSI, o el uso de otros indicadores para auxiliar el juicio. Se puede ajustar el parámetro de stop loss y stop loss móvil para adaptarlo a diferentes variedades y condiciones de volatilidad. Finalmente, se debe establecer con prudencia las reglas de administración de fondos, que no deben ser demasiado radicales para evitar exceder la capacidad de asumir el riesgo.

Dirección de optimización

  • Intenta la confirmación de la señal con otros indicadores en combinación con el RSI, como KD, MACD, etc.
  • Optimización de los parámetros de detención móvil de acuerdo con las características de las diferentes variedades y el rango de fluctuación
  • Pruebe otros métodos de gestión de fondos, como el comercio de cantidades fijas, la fórmula de Kelly, etc.
  • Añadir condiciones para abrir posiciones, como romper la línea de Brin, desviarse del RSI, etc.
  • Consideraciones para agregar precios de salida y posiciones adicionales en una tendencia fuerte

La estrategia puede ser optimizada en varios aspectos. En primer lugar, la búsqueda de otros indicadores técnicos que puedan complementar o confirmar el RSI, lo que mejora la fiabilidad de la señal. En segundo lugar, la optimización de los parámetros de parada móvil de stop loss en función de las características específicas de la variedad es muy importante.

Resumir

La estrategia de seguimiento de la tendencia RSI tiene una idea clara. El núcleo está en el uso de RSI para determinar la dirección de la tendencia y ayudar a mejorar la precisión de la determinación mediante el aumento de peso de las medias móviles. La ventaja de la estrategia es que puede seguir la tendencia y maximizar el bloqueo de ganancias, al mismo tiempo que se establece el control de pérdidas y pérdidas para controlar el riesgo. Pero la baja fiabilidad del indicador RSI y la configuración de los parámetros tienen espacio para optimización.

||

Overview

This strategy combines the RSI indicator and weighted moving average for trend following trading. It goes long when RSI is above 60 and goes short when RSI is below 40, with the moving average verifying the trend condition. The 40-period RSI acts as a trend following indicator. The weighted moving average uses different weights to reduce the impact of short-term fluctuations. The strategy also employs stop loss and trailing take profit to control risks.

Strategy Logic

The strategy firstly calculates the RSI and weighted moving average. The RSI length is 20 periods and the weighted MA length is 20 with higher weights that reduce the impact of short-term volatility. It goes long when RSI is above 60 and weighted MA rate of change is below -1%. It goes short when RSI is below 40 and weighted MA rate of change is above 1%.

After opening long or short, stop loss and trailing take profit orders are placed simultaneously. The stop loss is set at 3 ATR from the current price. The initial trailing take profit activation is 4 ATR away, and trails in 3% increments. When price hits either stop loss or trailing take profit activation, the position will be closed.

The strategy also incorporates money management rules based on the fixed fractional position sizing approach. Whenever PNL hits a fixed amount, the order size is increased or decreased by a fixed amount.

Advantage Analysis

  • RSI indicator can effectively track trends
  • Weighted MA reduces the impact of short-term fluctuations, avoiding whipsaws
  • Trailing take profit allows profits to be maximized
  • Fixed fraction position sizing controls risk effectively

The overall edge is the ability to follow trends, while taking stop loss and trailing take profit measures to control risks, thus capturing significant gains in strong trends.

Risk Analysis

  • False signals from RSI may cause unnecessary trades
  • Forced to stop out when price breaches stop or trailing take profit levels, unable to keep following trends
  • Aggressive money management rules may lead to large losses

The main risks come from the reliability of RSI signals and the stop loss/trailing take profit settings. Incorrect parameters may result in unnecessary closing of trades or losses beyond risk appetite. Breaking stop loss/take profit may also force unwarranted stop outs, losing the chance to continue trend trading.

Solutions include optimizing RSI parameters or adding other indicators for signal confirmation. Adjust stop/trailing take profit levels based on different products and volatility conditions. Also be prudent with money management rules to avoid excessive risks.

Optimization Directions

  • Test other indicators together with RSI for signal confirmation, e.g. KD, MACD etc
  • Optimize stop loss and trailing take profit parameters based on product characteristics and volatility range
  • Try other money management techniques like fixed size trading, Kelly formula etc
  • Add entry conditions like Bollinger breakouts, RSI divergences etc
  • Consider adding positions on strong trends

There are many aspects to optimize. First is identifying other indicators to supplement RSI signals. Next critical step is optimizing stop loss/trailing take profit parameters based on historical performance. Money management can also switch to other types. Finally, entry, add-on conditions can be enhanced to pyramiding positions in strong trends.

Summary

The RSI trend following strategy has clear logic, using RSI for trend direction and weighted MA for confirmation. Its strength lies in trend trading, maximizing profits with stops/money management controlling risks. But RSI reliability and parameter optimization need improvement. We can look into enhancing signal indicators, stop/trailing parameters, money management methods etc to make the strategy more robust across different products.

[/trans]

Código Fuente de la Estrategia
/*backtest
start: 2023-01-01 00:00:00
end: 2023-06-24 00:00:00
period: 1d
basePeriod: 1h
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
*/

// This source code is subject to the terms of the Mozilla Public License 2.0 at https://mozilla.org/MPL/2.0/
// © gsanson66


//This code is based on RSI and a backed weighted MA
//@version=5
strategy("RSI + MA BACKTESTING", overlay=true, initial_capital=1000, default_qty_type=strategy.fixed, commission_type=strategy.commission.percent, commission_value=0.18)


//------------------------FUNCTIONS---------------------------//

//@function which calculate a retro weighted moving average to minimize the impact of short term reversal
rwma(source, length) =>
    sum = 0.0
    denominator = 0.0
    weight = 0.0
    weight_x = 100/(4+(length-4)*1.30)
    weight_y = 1.30*weight_x
    for i=0 to length - 1
        if i <= 3
            weight := weight_x
        else
            weight := weight_y
        sum := sum + source[i] * weight
        denominator := denominator + weight
    rwma = sum/denominator

//@function which permits the user to choose a moving average type
ma(source, length, type) =>
    switch type
        "SMA" => ta.sma(source, length)
        "RWMA" => rwma(source, length)

//@function Displays text passed to `txt` when called.
debugLabel(txt, color) =>
    label.new(bar_index, high, text = txt, color=color, style = label.style_label_lower_right, textcolor = color.black, size = size.small)

//@function which looks if the close date of the current bar falls inside the date range
inBacktestPeriod(start, end) => (time >= start) and (time <= end)


//--------------------------------USER INPUTS-------------------------------//

//Technical parameters
rsiLengthInput = input.int(20, minval=1, title="RSI Length", group="RSI Settings")
maTypeInput = input.string("RWMA", title="MA Type", options=["SMA", "RWMA"], group="MA Settings", inline="1")
maLenghtInput = input.int(20, minval=1, title="MA Length", group="MA Settings", inline="1")
rsiLongSignalValue = input.int(60, minval=1, maxval=99, title="RSI Long Signal", group="Strategy parameters", inline="3")
rsiShortSignalValue = input.int(40, minval=1, maxval=99, title="RSI Short Signal", group="Strategy parameters", inline="3")
rocMovAverLongSignalValue = input.float(-1, maxval=0, title="ROC MA Long Signal", group="Strategy parameters", inline="4")
rocMovAverShortSignalValue = input.float(1, minval=0, title="ROC MA Short Signal", group="Strategy parameters", inline="4")
//TP Activation and Trailing TP
takeProfitActivationInput = input.float(4, minval=1.0, title="TP activation in multiple of ATR", group="Strategy parameters")
trailingStopInput = input.float(3, minval=0, title="Trailing TP in percentage", group="Strategy parameters")
//Money Management
fixedRatio = input.int(defval=400, minval=1, title="Fixed Ratio Value ($)", group="Money Management")
increasingOrderAmount = input.int(defval=200, minval=1, title="Increasing Order Amount ($)", group="Money Management")
//Backtesting period
startDate = input(title="Start Date", defval=timestamp("1 Jan 2018 00:00:00"), group="Backtesting Period")
endDate = input(title="End Date", defval=timestamp("1 July 2024 00:00:00"), group="Backtesting Period")

strategy.initial_capital = 50000

//------------------------------VARIABLES INITIALISATION-----------------------------//

float rsi = ta.rsi(close, rsiLengthInput)
float ma = ma(close, maLenghtInput, maTypeInput)
float roc_ma = ((ma/ma[maLenghtInput]) - 1)*100
float atr = ta.atr(20)
var float trailingStopOffset = na
var float trailingStopActivation = na
var float trailingStop = na
var float stopLoss = na
var bool long = na
var bool short = na
var bool bufferTrailingStopDrawing = na
float theoreticalStopPrice = na
bool inRange = na
equity = strategy.equity - strategy.openprofit
var float capital_ref = strategy.initial_capital
var float cashOrder = strategy.initial_capital * 0.95


//------------------------------CHECKING SOME CONDITIONS ON EACH SCRIPT EXECUTION-------------------------------//

//Checking if the date belong to the range
inRange := true

//Checking performances of the strategy
if equity > capital_ref + fixedRatio
    spread = (equity - capital_ref)/fixedRatio
    nb_level = int(spread)
    increasingOrder = nb_level * increasingOrderAmount
    cashOrder := cashOrder + increasingOrder
    capital_ref := capital_ref + nb_level*fixedRatio
if equity < capital_ref - fixedRatio
    spread = (capital_ref - equity)/fixedRatio
    nb_level = int(spread)
    decreasingOrder = nb_level * increasingOrderAmount
    cashOrder := cashOrder - decreasingOrder
    capital_ref := capital_ref - nb_level*fixedRatio

//Checking if we close all trades in case where we exit the backtesting period
if strategy.position_size!=0 and not inRange
    debugLabel("END OF BACKTESTING PERIOD : we close the trade", color=color.rgb(116, 116, 116))
    strategy.close_all()
    bufferTrailingStopDrawing := false
    stopLoss := na
    trailingStopActivation := na
    trailingStop := na
    short := false
    long := false


//------------------------------STOP LOSS AND TRAILING STOP ACTIVATION----------------------------//

// We handle the stop loss and trailing stop activation 
if (low <= stopLoss or high >= trailingStopActivation) and long
    if high >= trailingStopActivation
        bufferTrailingStopDrawing := true
    else if low <= stopLoss
        long := false
    stopLoss := na
    trailingStopActivation := na
if (low <= trailingStopActivation or high >= stopLoss) and short
    if low <= trailingStopActivation
        bufferTrailingStopDrawing := true
    else if high >= stopLoss
        short := false
    stopLoss := na
    trailingStopActivation := na


//-------------------------------------TRAILING STOP--------------------------------------//

// If the traling stop is activated, we manage its plotting with the bufferTrailingStopDrawing
if bufferTrailingStopDrawing and long
    theoreticalStopPrice := high - trailingStopOffset * syminfo.mintick
    if na(trailingStop)
        trailingStop := theoreticalStopPrice
    else if theoreticalStopPrice > trailingStop
        trailingStop := theoreticalStopPrice
    else if low <= trailingStop
        trailingStop := na
        bufferTrailingStopDrawing := false
        long := false
if bufferTrailingStopDrawing and short
    theoreticalStopPrice := low + trailingStopOffset * syminfo.mintick
    if na(trailingStop)
        trailingStop := theoreticalStopPrice
    else if theoreticalStopPrice < trailingStop
        trailingStop := theoreticalStopPrice
    else if high >= trailingStop
        trailingStop := na
        bufferTrailingStopDrawing := false
        short := false


//---------------------------------LONG CONDITION--------------------------//

if rsi >= 60 and roc_ma <= rocMovAverLongSignalValue and inRange and not long
    if short
        bufferTrailingStopDrawing := false
        stopLoss := na
        trailingStopActivation := na
        trailingStop := na
        short := false
    trailingStopActivation := close + takeProfitActivationInput*atr
    trailingStopOffset := (trailingStopActivation * trailingStopInput/100) / syminfo.mintick
    stopLoss := close - 3*atr
    long := true
    qty = cashOrder/close
    strategy.entry("Long", strategy.long, qty)
    strategy.exit("Exit Long", "Long", stop = stopLoss, trail_price = trailingStopActivation,
                 trail_offset = trailingStopOffset)


//--------------------------------SHORT CONDITION-------------------------------//

if rsi <= 40 and roc_ma >= rocMovAverShortSignalValue and inRange and not short
    if long
        bufferTrailingStopDrawing := false
        stopLoss := na
        trailingStopActivation := na
        trailingStop := na
        long := false
    trailingStopActivation := close - takeProfitActivationInput*atr
    trailingStopOffset := (trailingStopActivation * trailingStopInput/100) / syminfo.mintick
    stopLoss := close + 3*atr
    short := true
    qty = cashOrder/close
    strategy.entry("Short", strategy.short, qty)
    strategy.exit("Exit Short", "Short", stop = stopLoss, trail_price = trailingStopActivation,
                 trail_offset = trailingStopOffset)


//--------------------------------PLOTTING ELEMENT---------------------------------//

// Plotting of element in the graph
plotchar(rsi, "RSI", "", location.top, color.rgb(0, 214, 243))
plot(ma, "MA", color.rgb(219, 219, 18))
plotchar(roc_ma, "ROC MA", "", location.top, color=color.orange)
// Visualizer trailing stop and stop loss movement
plot(stopLoss, "SL", color.red, 3, plot.style_linebr)
plot(trailingStopActivation, "Trigger Trail", color.green, 3, plot.style_linebr)
plot(trailingStop, "Trailing Stop",  color.blue, 3, plot.style_linebr)