
この戦略は,双方向の価格振動突破に基づく量化取引戦略である.これは,ピボット高低点を価格の重要なサポートレジスタンス位として使用し,価格がピボット高点を突破するときに多行し,ピボット低点を突破するときに空行し,双方向の操作を実現する.
この戦略の核心的な論理は,双方向の価格のキーポイント突破に基づいています.具体的には,以下のステップがあります.
指定周期のピボット高低点を計算する.ここでは,ta.pivothigh ((() とta.pivotlow ((() 函数を使用して,最近2日間の最高値を高点として計算し,最近1日間の最低値を低点として計算する.
価格が上述の計算した重要な高点を破るときに多入場する. 価格が重要な低点を破るときに空売りする.
止損単位の止損を使用します. オーバーの場合は,止損価格は高点 + 最小価格変化の単位;空白の場合は,止損価格は低点 - 最小価格変化の単位です.
重要な高低点を描いて直感的に判断する.
このように,価格が揺れるときは,重要なポイントの突破時に間に合うように入場し,すぐに止まり,利益を得ることができます.価格が新しい高値や新しい低値を突破し続けるとき,戦略は複数の累積利益を実現することができます.
この2方向の突破策には以下の利点があります.
この戦略は,ピボット高低点を突破して入場するだけで,非常に単純です.
簡単にストップを設定する.多空を分けて高点・低点+最小の変動距離をストップポイントとして行うことで,迅速にストップして,リスクを効果的にコントロールできる.
この戦略は,市場が上下していても,順調に実行され,利益が蓄積されます.
価格が頻繁に上昇・下落するときに,戦略は頻繁に場内に入り,利益を得ることができる.
この戦略の利点にもかかわらず,注意すべきリスクもあります.
キーポイントを正しく設定しない場合,損失が増加する可能性がある.キーポイントの高低を正しく設定しない場合,極端な場合,高殺低を追う可能性がある.
震動が終わった後,損失が始まる可能性があります. 価格が震動ではなく,単面的な突破を始める時,この戦略は利益を得ることが困難です.
突破は短期間の偽突破である可能性もある.短期間の偽突破も起こりうるため,戦略は誤った取引を生む.
総じて,この戦略は震動状況で使用するのに適しています. 投資家は判断に注意し,トレンド状況でこの戦略を使用することを避ける必要があります. また,誤りや偽突破などのキーポイント決定の問題による損失を防ぐことに注意してください.
上記のリスクを考慮して,この戦略の最適化には以下のような側面がある:
鍵高低点パラメータをスマートに選択する.機械学習などの手段により,システムが自動的に最適化して適切な鍵高点パラメータを選択できるようにする.
トレンド判断を組み合わせる.戦略の基礎にトレンド判断の論理を加え,震動状況でその戦略を使用し,一方的なトレンドで戦略を閉じる.その結果,損失を減らす.
リスクのコントロールをさらに進めるため,移動ストップ,区間突破ストップなどのより精密なストップ戦略を設計できます.
この戦略は,シンプルで実用的な双方向の突破策である.これは,価格の鍵点の突破によって入場し,ストップ・損失保証のリスクを制御する.この戦略は,震動の状況に適しており,双方向取引で利益を得ることができる.しかし,この戦略には一定のリスクがあり,投資家は慎重に使用する必要があります.最適化の余地は,スマートな選択パラメータ,傾向判断と設計の組み合わせにより精密なストップ・損失戦略などの側面にあります.
/*backtest
start: 2023-12-01 00:00:00
end: 2023-12-31 23:59:59
period: 2h
basePeriod: 15m
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
*/
//@version=5
strategy('Monthly Returns with Benchmark', overlay=true, default_qty_type=strategy.percent_of_equity, default_qty_value=25, commission_type=strategy.commission.percent, commission_value=0.1)
////////////
// Inputs //
// Pivot points inputs
leftBars = input(2, group = "Pivot Points")
rightBars = input(1, group = "Pivot Points")
// Styling inputs
prec = input(2, title='Return Precision', group = "Monthly Table")
from_date = input(timestamp("01 Jan 2000 00:00 +0000"), "From Date", group = "Monthly Table")
prof_color = input.color(color.green, title = "Gradient Colors", group = "Monthly Table", inline = "colors")
loss_color = input.color(color.red, title = "", group = "Monthly Table", inline = "colors")
// Benchmark inputs
use_cur = input.bool(true, title = "Use current Symbol for Benchmark", group = "Benchmark")
symb_bench = input('BTC_USDT:swap', title = "Benchmark", group = "Benchmark")
disp_bench = input.bool(true, title = "Display Benchmark?", group = "Benchmark")
disp_alpha = input.bool(true, title = "Display Alpha?", group = "Benchmark")
// Pivot Points Strategy
swh = ta.pivothigh(leftBars, rightBars)
swl = ta.pivotlow(leftBars, rightBars)
hprice = 0.0
hprice := not na(swh) ? swh : hprice[1]
lprice = 0.0
lprice := not na(swl) ? swl : lprice[1]
le = false
le := not na(swh) ? true : le[1] and high > hprice ? false : le[1]
se = false
se := not na(swl) ? true : se[1] and low < lprice ? false : se[1]
if le
strategy.entry('PivRevLE', strategy.long, comment='PivRevLE', stop=hprice + syminfo.mintick)
if se
strategy.entry('PivRevSE', strategy.short, comment='PivRevSE', stop=lprice - syminfo.mintick)
plot(hprice, color=color.new(color.green, 0), linewidth=2)
plot(lprice, color=color.new(color.red, 0), linewidth=2)
///////////////////
// MONTHLY TABLE //
new_month = month(time) != month(time[1])
new_year = year(time) != year(time[1])
eq = strategy.equity
bench_eq = close
// benchmark eq
bench_eq_htf = request.security(symb_bench, timeframe.period, close)
if (not use_cur)
bench_eq := bench_eq_htf
bar_pnl = eq / eq[1] - 1
bench_pnl = bench_eq / bench_eq[1] - 1
cur_month_pnl = 0.0
cur_year_pnl = 0.0
// Current Monthly P&L
cur_month_pnl := bar_index == 0 ? 0 :
time >= from_date and (time[1] < from_date or new_month) ? bar_pnl :
(1 + cur_month_pnl[1]) * (1 + bar_pnl) - 1
// Current Yearly P&L
cur_year_pnl := bar_index == 0 ? 0 :
time >= from_date and (time[1] < from_date or new_year) ? bar_pnl :
(1 + cur_year_pnl[1]) * (1 + bar_pnl) - 1
bench_cur_month_pnl = 0.0
bench_cur_year_pnl = 0.0
// Current Monthly P&L - Bench
bench_cur_month_pnl := bar_index == 0 or (time[1] < from_date and time >= from_date) ? 0 :
time >= from_date and new_month ? bench_pnl :
(1 + bench_cur_month_pnl[1]) * (1 + bench_pnl) - 1
// Current Yearly P&L - Bench
bench_cur_year_pnl := bar_index == 0 ? 0 :
time >= from_date and (time[1] < from_date or new_year) ? bench_pnl :
(1 + bench_cur_year_pnl[1]) * (1 + bench_pnl) - 1
var month_time = array.new_int(0)
var year_time = array.new_int(0)
var month_pnl = array.new_float(0)
var year_pnl = array.new_float(0)
var bench_month_pnl = array.new_float(0)
var bench_year_pnl = array.new_float(0)
// Filling monthly / yearly pnl arrays
if array.size(month_time) > 0
if month(time) == month(array.get(month_time, array.size(month_time) - 1))
array.pop(month_pnl)
array.pop(bench_month_pnl)
array.pop(month_time)
if array.size(year_time) > 0
if year(time) == year(array.get(year_time, array.size(year_time) - 1))
array.pop(year_pnl)
array.pop(bench_year_pnl)
array.pop(year_time)
if (time >= from_date)
array.push(month_time, time)
array.push(year_time, time)
array.push(month_pnl, cur_month_pnl)
array.push(year_pnl, cur_year_pnl)
array.push(bench_year_pnl, bench_cur_year_pnl)
array.push(bench_month_pnl, bench_cur_month_pnl)
// Monthly P&L Table
var monthly_table = table(na)
if array.size(year_pnl) > 0 and barstate.islastconfirmedhistory
monthly_table := table.new(position.bottom_right, columns=15, rows=array.size(year_pnl) * 3 + 5, border_width=1)
// Fill monthly performance
table.cell(monthly_table, 0, 0, 'Perf', bgcolor = #999999)
table.cell(monthly_table, 1, 0, 'Jan', bgcolor = #999999)
table.cell(monthly_table, 2, 0, 'Feb', bgcolor = #999999)
table.cell(monthly_table, 3, 0, 'Mar', bgcolor = #999999)
table.cell(monthly_table, 4, 0, 'Apr', bgcolor = #999999)
table.cell(monthly_table, 5, 0, 'May', bgcolor = #999999)
table.cell(monthly_table, 6, 0, 'Jun', bgcolor = #999999)
table.cell(monthly_table, 7, 0, 'Jul', bgcolor = #999999)
table.cell(monthly_table, 8, 0, 'Aug', bgcolor = #999999)
table.cell(monthly_table, 9, 0, 'Sep', bgcolor = #999999)
table.cell(monthly_table, 10, 0, 'Oct', bgcolor = #999999)
table.cell(monthly_table, 11, 0, 'Nov', bgcolor = #999999)
table.cell(monthly_table, 12, 0, 'Dec', bgcolor = #999999)
table.cell(monthly_table, 13, 0, ' ', bgcolor = #999999)
table.cell(monthly_table, 14, 0, 'Year', bgcolor = #999999)
max_abs_y = math.max(math.abs(array.max(year_pnl)), math.abs(array.min(year_pnl)))
max_abs_m = math.max(math.abs(array.max(month_pnl)), math.abs(array.min(month_pnl)))
for yi = 0 to array.size(year_pnl) - 1 by 1
table.cell(monthly_table, 0, yi + 1, str.tostring(year(array.get(year_time, yi))), bgcolor=#cccccc)
table.cell(monthly_table, 13, yi + 1, ' ', bgcolor=#999999)
y_color = color.from_gradient(array.get(year_pnl, yi), -max_abs_y, max_abs_y, loss_color, prof_color)
table.cell(monthly_table, 14, yi + 1, str.tostring(math.round(array.get(year_pnl, yi) * 100, prec)), bgcolor=y_color)
for mi = 0 to array.size(month_time) - 1 by 1
m_row = year(array.get(month_time, mi)) - year(array.get(year_time, 0)) + 1
m_col = month(array.get(month_time, mi))
m_color = color.from_gradient(array.get(month_pnl, mi), -max_abs_m, max_abs_m, loss_color, prof_color)
table.cell(monthly_table, m_col, m_row, str.tostring(math.round(array.get(month_pnl, mi) * 100, prec)), bgcolor=m_color)
// Fill benchmark performance
next_row = array.size(year_pnl) + 1
if (disp_bench)
table.cell(monthly_table, 0, next_row, 'Bench', bgcolor=#999999)
table.cell(monthly_table, 1, next_row, 'Jan', bgcolor=#999999)
table.cell(monthly_table, 2, next_row, 'Feb', bgcolor=#999999)
table.cell(monthly_table, 3, next_row, 'Mar', bgcolor=#999999)
table.cell(monthly_table, 4, next_row, 'Apr', bgcolor=#999999)
table.cell(monthly_table, 5, next_row, 'May', bgcolor=#999999)
table.cell(monthly_table, 6, next_row, 'Jun', bgcolor=#999999)
table.cell(monthly_table, 7, next_row, 'Jul', bgcolor=#999999)
table.cell(monthly_table, 8, next_row, 'Aug', bgcolor=#999999)
table.cell(monthly_table, 9, next_row, 'Sep', bgcolor=#999999)
table.cell(monthly_table, 10, next_row, 'Oct', bgcolor=#999999)
table.cell(monthly_table, 11, next_row, 'Nov', bgcolor=#999999)
table.cell(monthly_table, 12, next_row, 'Dec', bgcolor=#999999)
table.cell(monthly_table, 13, next_row, ' ', bgcolor = #999999)
table.cell(monthly_table, 14, next_row, 'Year', bgcolor=#999999)
max_bench_abs_y = math.max(math.abs(array.max(bench_year_pnl)), math.abs(array.min(bench_year_pnl)))
max_bench_abs_m = math.max(math.abs(array.max(bench_month_pnl)), math.abs(array.min(bench_month_pnl)))
for yi = 0 to array.size(year_time) - 1 by 1
table.cell(monthly_table, 0, yi + 1 + next_row + 1, str.tostring(year(array.get(year_time, yi))), bgcolor=#cccccc)
table.cell(monthly_table, 13, yi + 1 + next_row + 1, ' ', bgcolor=#999999)
y_color = color.from_gradient(array.get(bench_year_pnl, yi), -max_bench_abs_y, max_bench_abs_y, loss_color, prof_color)
table.cell(monthly_table, 14, yi + 1 + next_row + 1, str.tostring(math.round(array.get(bench_year_pnl, yi) * 100, prec)), bgcolor=y_color)
for mi = 0 to array.size(month_time) - 1 by 1
m_row = year(array.get(month_time, mi)) - year(array.get(year_time, 0)) + 1
m_col = month(array.get(month_time, mi))
m_color = color.from_gradient(array.get(bench_month_pnl, mi), -max_bench_abs_m, max_bench_abs_m, loss_color, prof_color)
table.cell(monthly_table, m_col, m_row + next_row + 1, str.tostring(math.round(array.get(bench_month_pnl, mi) * 100, prec)), bgcolor=m_color)
// Fill Alpha
if (disp_alpha)
next_row := array.size(year_pnl) * 2 + 3
table.cell(monthly_table, 0, next_row, 'Alpha', bgcolor=#999999)
table.cell(monthly_table, 1, next_row, 'Jan', bgcolor=#999999)
table.cell(monthly_table, 2, next_row, 'Feb', bgcolor=#999999)
table.cell(monthly_table, 3, next_row, 'Mar', bgcolor=#999999)
table.cell(monthly_table, 4, next_row, 'Apr', bgcolor=#999999)
table.cell(monthly_table, 5, next_row, 'May', bgcolor=#999999)
table.cell(monthly_table, 6, next_row, 'Jun', bgcolor=#999999)
table.cell(monthly_table, 7, next_row, 'Jul', bgcolor=#999999)
table.cell(monthly_table, 8, next_row, 'Aug', bgcolor=#999999)
table.cell(monthly_table, 9, next_row, 'Sep', bgcolor=#999999)
table.cell(monthly_table, 10, next_row, 'Oct', bgcolor=#999999)
table.cell(monthly_table, 11, next_row, 'Nov', bgcolor=#999999)
table.cell(monthly_table, 12, next_row, 'Dec', bgcolor=#999999)
table.cell(monthly_table, 13, next_row, '', bgcolor=#999999)
table.cell(monthly_table, 14, next_row, 'Year', bgcolor=#999999)
max_alpha_abs_y = 0.0
for yi = 0 to array.size(year_time) - 1 by 1
if (math.abs(array.get(year_pnl, yi) - array.get(bench_year_pnl, yi)) > max_alpha_abs_y)
max_alpha_abs_y := math.abs(array.get(year_pnl, yi) - array.get(bench_year_pnl, yi))
max_alpha_abs_m = 0.0
for mi = 0 to array.size(month_pnl) - 1 by 1
if (math.abs(array.get(month_pnl, mi) - array.get(bench_month_pnl, mi)) > max_alpha_abs_m)
max_alpha_abs_m := math.abs(array.get(month_pnl, mi) - array.get(bench_month_pnl, mi))
for yi = 0 to array.size(year_time) - 1 by 1
table.cell(monthly_table, 0, yi + 1 + next_row + 1, str.tostring(year(array.get(year_time, yi))), bgcolor=#cccccc)
table.cell(monthly_table, 13, yi + 1 + next_row + 1, ' ', bgcolor=#999999)
y_color = color.from_gradient(array.get(year_pnl, yi) - array.get(bench_year_pnl, yi), -max_alpha_abs_y, max_alpha_abs_y, loss_color, prof_color)
table.cell(monthly_table, 14, yi + 1 + next_row + 1, str.tostring(math.round((array.get(year_pnl, yi) - array.get(bench_year_pnl, yi)) * 100, prec)), bgcolor=y_color)
for mi = 0 to array.size(month_time) - 1 by 1
m_row = year(array.get(month_time, mi)) - year(array.get(year_time, 0)) + 1
m_col = month(array.get(month_time, mi))
m_color = color.from_gradient(array.get(month_pnl, mi) - array.get(bench_month_pnl, mi), -max_alpha_abs_m, max_alpha_abs_m, loss_color, prof_color)
table.cell(monthly_table, m_col, m_row + next_row + 1, str.tostring(math.round((array.get(month_pnl, mi) - array.get(bench_month_pnl, mi)) * 100, prec)), bgcolor=m_color)