
양방향 이동 평균 반전 거래 전략 (Bidirectional Moving Average Reversion Trading Strategy) 은 가격 평균 반전 원리를 이용한 양적 거래 전략이다. 이 전략은 이동 평균의 여러 그룹을 설정하여 가격 반전 기회를 포착하고, 가격의 평균에서 어느 정도 벗어난 후 현장에 들어가며, 가격이 평균으로 돌아오는 것을 기다리는 동안 평소 포지션 마저리드 (Placing arbitrage) 를 수행한다.
이 전략은 주로 가격의 평균 회귀 이론에 기초한다. 그것은 가격이 항상 평균값의 변동을 중심으로 움직이며, 가격이 평균값에서 크게 벗어날 때 평균값으로 돌아가는 것이 더 가능하다고 믿는다. 구체적으로, 이 전략은 동시에 세 개의 평균선을 설정한다: 개시 평균선, 매매 평균선 및 제한 평균선. 가격이 개시 평균선에 도달하면, 상반된 매수 또는 매수 포지션이 열린다. 가격이 매매 평균선에 도달하면, 이전 포지션이 평행된다. 마지막으로, 가격이 계속 움직이지 않으면 손실을 제어 할 수 있습니다.
코드 논리적으로 볼 때, 개시 평균선은 상수선과 하위선으로 나뉘며, 각각 긴 선과 짧은 선으로 구성된다. 가격과의 오차 정도가 포지션 크기를 결정한다. 또한, 평소 평균선은 평소 포지션의 시간을 결정하는 데 사용되는 별도의 평균선이다. 가격이 이 평준으로 운행되면 포지션은 평정된다.
양방향 평평선 회귀 전략의 장점은 주로 다음과 같다.
이 전략은 낮은 변동성, 가격 변동 범위가 작은 품종에 적용되며, 특히 정리 단계로 들어오는 품종에 적용된다. 그것은 가격의 임시 반전의 기회를 효과적으로 잡을 수 있다. 또한, 그것의 위험 제어 조치는 또한 완벽하다. 가격이 돌아가지 않더라도 손실을 일정 범위 내에서 제어 할 수 있다.
이 전략에는 몇 가지 위험도 있습니다.
위와 같은 위험에는 다음과 같은 측면에서 최적화할 수 있습니다.
이 전략은 다음과 같은 관점에서 크게 최적화 할 수 있습니다.
양방향 평행선 회귀 거래 전략은 가격이 이동 평행선에서 벗어난 후의 회귀 기회를 포착하여 수익을 창출합니다. 그것은 위험을 효과적으로 제어하고, 변수 최적화를 통해 더 나은 수익을 얻을 수 있습니다. 이 전략에도 약간의 위험이 있지만, 포지션 개설 논리를 개선하고, 포지션 크기를 줄이는 방법 등을 통해 제어 할 수 있습니다. 이 전략은 간단하고 이해하기 쉽습니다.
/*backtest
start: 2023-12-15 00:00:00
end: 2024-01-14 00:00:00
period: 1h
basePeriod: 15m
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
*/
//@version=5
strategy(title = "hamster-bot MRS 2", overlay = true, default_qty_type = strategy.percent_of_equity, initial_capital = 100, default_qty_value = 30, pyramiding = 1, commission_value = 0.1, backtest_fill_limits_assumption = 1)
info_options = "Options"
on_close = input(false, title = "Entry on close", inline=info_options, group=info_options)
OFFS = input.int(0, minval = 0, maxval = 1, title = "| Offset View", inline=info_options, group=info_options)
trade_offset = input.int(0, minval = 0, maxval = 1, title = "Trade", inline=info_options, group=info_options)
use_kalman_filter = input.bool(false, title="Use Kalman filter", group=info_options)
//MA Opening
info_opening = "MA Opening Long"
maopeningtyp_l = input.string("SMA", title="Type", options=["SMA", "EMA", "TEMA", "DEMA", "ZLEMA", "WMA", "Hma", "Thma", "Ehma", "H", "L", "DMA"], title = "", inline=info_opening, group=info_opening)
maopeningsrc_l = input.source(ohlc4, title = "", inline=info_opening, group=info_opening)
maopeninglen_l = input.int(3, minval = 1, title = "", inline=info_opening, group=info_opening)
long1on = input(true, title = "", inline = "long1")
long1shift = input.float(0.96, step = 0.005, title = "Long", inline = "long1")
long1lot = input.int(10, minval = 0, maxval = 10000, step = 10, title = "Lot 1", inline = "long1")
info_opening_s = "MA Opening Short"
maopeningtyp_s = input.string("SMA", title="Type", options=["SMA", "EMA", "TEMA", "DEMA", "ZLEMA", "WMA", "Hma", "Thma", "Ehma", "H", "L", "DMA"], title = "", inline=info_opening_s, group=info_opening_s)
maopeningsrc_s = input.source(ohlc4, title = "", inline=info_opening_s, group=info_opening_s)
maopeninglen_s = input.int(3, minval = 1, title = "", inline=info_opening_s, group=info_opening_s)
short1on = input(true, title = "", inline = "short1")
short1shift = input.float(1.04, step = 0.005, title = "short", inline = "short1")
short1lot = input.int(10, minval = 0, maxval = 10000, step = 10, title = "Lot 1", inline = "short1")
//MA Closing
info_closing = "MA Closing"
maclosingtyp = input.string("SMA", title="Type", options=["SMA", "EMA", "TEMA", "DEMA", "ZLEMA", "WMA", "Hma", "Thma", "Ehma", "H", "L", "DMA"], title = "", inline=info_closing, group=info_closing)
maclosingsrc = input.source(ohlc4, title = "", inline=info_closing, group=info_closing)
maclosinglen = input.int(3, minval = 1, maxval = 200, title = "", inline=info_closing, group=info_closing)
maclosingmul = input.float(1, step = 0.005, title = "mul", inline=info_closing, group=info_closing)
startTime = input(timestamp("01 Jan 2010 00:00 +0000"), "Start date", inline = "period")
finalTime = input(timestamp("31 Dec 2030 23:59 +0000"), "Final date", inline = "period")
HMA(_src, _length) => ta.wma(2 * ta.wma(_src, _length / 2) - ta.wma(_src, _length), math.round(math.sqrt(_length)))
EHMA(_src, _length) => ta.ema(2 * ta.ema(_src, _length / 2) - ta.ema(_src, _length), math.round(math.sqrt(_length)))
THMA(_src, _length) => ta.wma(ta.wma(_src,_length / 3) * 3 - ta.wma(_src, _length / 2) - ta.wma(_src, _length), _length)
tema(sec, length)=>
tema1= ta.ema(sec, length)
tema2= ta.ema(tema1, length)
tema3= ta.ema(tema2, length)
tema_r = 3*tema1-3*tema2+tema3
donchian(len) => math.avg(ta.lowest(len), ta.highest(len))
ATR_func(_src, _len)=>
atrLow = low - ta.atr(_len)
trailAtrLow = atrLow
trailAtrLow := na(trailAtrLow[1]) ? trailAtrLow : atrLow >= trailAtrLow[1] ? atrLow : trailAtrLow[1]
supportHit = _src <= trailAtrLow
trailAtrLow := supportHit ? atrLow : trailAtrLow
trailAtrLow
f_dema(src, len)=>
EMA1 = ta.ema(src, len)
EMA2 = ta.ema(EMA1, len)
DEMA = (2*EMA1)-EMA2
f_zlema(src, period) =>
lag = math.round((period - 1) / 2)
ema_data = src + (src - src[lag])
zl= ta.ema(ema_data, period)
f_kalman_filter(src) =>
float value1= na
float value2 = na
value1 := 0.2 * (src - src[1]) + 0.8 * nz(value1[1])
value2 := 0.1 * (ta.tr) + 0.8 * nz(value2[1])
lambda = math.abs(value1 / value2)
alpha = (-math.pow(lambda, 2) + math.sqrt(math.pow(lambda, 4) + 16 * math.pow(lambda, 2)))/8
value3 = float(na)
value3 := alpha * src + (1 - alpha) * nz(value3[1])
//SWITCH
ma_func(modeSwitch, src, len, use_k_f=true) =>
modeSwitch == "SMA" ? use_kalman_filter and use_k_f ? f_kalman_filter(ta.sma(src, len)) : ta.sma(src, len) :
modeSwitch == "RMA" ? use_kalman_filter and use_k_f ? f_kalman_filter(ta.rma(src, len)) : ta.rma(src, len) :
modeSwitch == "EMA" ? use_kalman_filter and use_k_f ? f_kalman_filter(ta.ema(src, len)) : ta.ema(src, len) :
modeSwitch == "TEMA" ? use_kalman_filter and use_k_f ? f_kalman_filter(tema(src, len)) : tema(src, len):
modeSwitch == "DEMA" ? use_kalman_filter and use_k_f ? f_kalman_filter(f_dema(src, len)) : f_dema(src, len):
modeSwitch == "ZLEMA" ? use_kalman_filter and use_k_f ? f_kalman_filter(f_zlema(src, len)) : f_zlema(src, len):
modeSwitch == "WMA" ? use_kalman_filter and use_k_f ? f_kalman_filter(ta.wma(src, len)) : ta.wma(src, len):
modeSwitch == "VWMA" ? use_kalman_filter and use_k_f ? f_kalman_filter(ta.vwma(src, len)) : ta.vwma(src, len):
modeSwitch == "Hma" ? use_kalman_filter and use_k_f ? f_kalman_filter(HMA(src, len)) : HMA(src, len):
modeSwitch == "Ehma" ? use_kalman_filter and use_k_f ? f_kalman_filter(EHMA(src, len)) : EHMA(src, len):
modeSwitch == "Thma" ? use_kalman_filter and use_k_f ? f_kalman_filter(THMA(src, len/2)) : THMA(src, len/2):
modeSwitch == "ATR" ? use_kalman_filter and use_k_f ? f_kalman_filter(ATR_func(src, len)): ATR_func(src, len) :
modeSwitch == "L" ? use_kalman_filter and use_k_f ? f_kalman_filter(ta.lowest(len)): ta.lowest(len) :
modeSwitch == "H" ? use_kalman_filter and use_k_f ? f_kalman_filter(ta.highest(len)): ta.highest(len) :
modeSwitch == "DMA" ? donchian(len) : na
//Var
sum = 0.0
maopening_l = 0.0
maopening_s = 0.0
maclosing = 0.0
pos = strategy.position_size
p = 0.0
p := pos == 0 ? (strategy.equity / 100) / close : p[1]
truetime = true
loss = 0.0
maxloss = 0.0
equity = 0.0
//MA Opening
maopening_l := ma_func(maopeningtyp_l, maopeningsrc_l, maopeninglen_l)
maopening_s := ma_func(maopeningtyp_s, maopeningsrc_s, maopeninglen_s)
//MA Closing
maclosing := ma_func(maclosingtyp, maclosingsrc, maclosinglen) * maclosingmul
long1 = long1on == false ? 0 : long1shift == 0 ? 0 : long1lot == 0 ? 0 : maopening_l == 0 ? 0 : maopening_l * long1shift
short1 = short1on == false ? 0 : short1shift == 0 ? 0 : short1lot == 0 ? 0 : maopening_s == 0 ? 0 : maopening_s * short1shift
//Colors
long1col = long1 == 0 ? na : color.green
short1col = short1 == 0 ? na : color.red
//Lines
// plot(maopening_l, offset = OFFS, color = color.new(color.green, 50))
// plot(maopening_s, offset = OFFS, color = color.new(color.red, 50))
plot(maclosing, offset = OFFS, color = color.fuchsia)
long1line = long1 == 0 ? close : long1
short1line = short1 == 0 ? close : short1
plot(long1line, offset = OFFS, color = long1col)
plot(short1line, offset = OFFS, color = short1col)
//Lots
lotlong1 = p * long1lot
lotshort1 = p * short1lot
//Entry
if truetime
//Long
sum := 0
strategy.entry("L", strategy.long, lotlong1, limit = on_close ? na : long1, when = long1 > 0 and pos <= sum and (on_close ? close <= long1[trade_offset] : true))
sum := lotlong1
//Short
sum := 0
pos := -1 * pos
strategy.entry("S", strategy.short, lotshort1, limit = on_close ? na : short1, when = short1 > 0 and pos <= sum and (on_close ? close >= short1[trade_offset] : true))
sum := lotshort1
strategy.exit("Exit", na, limit = maclosing)
if time > finalTime
strategy.close_all()