Стратегия многотенденции

Автор:Чао Чжан, Дата: 2023-11-16 11:20:10
Тэги:

img

Обзор

Эта стратегия сочетает в себе несколько индикаторов для определения направления тренда и использует подход отслеживания тренда для захвата трендовых возможностей в среднесрочной и краткосрочной перспективе.

Логика стратегии

  1. Использовать WVAP для оценки уровня цен;

  2. RSI для оценки импульса;

  3. QQE для определения прорыва цены;

  4. ADX для определения силы тренда;

  5. Индикатор коралловой тенденции для оценки фундаментальной тенденции;

  6. ЛСМА оказывает содействие в оценке тенденций;

  7. Сгенерировать сигналы на основе множества индикаторных сигналов.

Стратегия в основном опирается на RSI, QQE, ADX и другие индикаторы для определения направления и силы тренда, используя кривую Coral Trend Indicator в качестве ориентира для фундаментального тренда.

Преимущества

  1. Комбинация нескольких показателей повышает точность;

  2. подчеркивает необходимость отслеживания тенденций для повышения рентабельности;

  3. Принимает концепцию прорыва для отбора различных рынков;

  4. включает фундаментальные показатели для предотвращения контратендентных операций;

  5. разумное время торговли и контроль риска размеров позиций;

  6. Ясная логика стратегии, легкая для понимания и оптимизации.

Наибольшее преимущество этой стратегии заключается в сочетании сигналов от нескольких индикаторов, что снижает вероятность ошибочного суждения от любого индикатора и повышает точность. Акцент на отслеживании тренда и концепции прорыва также помогает отслеживать надежные среднесрочные возможности. Кроме того, включение фундаментальных индикаторов предотвращает торговлю против основных тенденций. Эти варианты дизайна улучшают стабильность и прибыльность стратегии.

Риски

  1. Задержка вынесения решения из-за множества показателей, отсутствие лучшей входной цены;

  2. Недостаточный контроль за использованием, большой риск использования;

  3. Потенциальные пропущенные сигналы при изменении основного тренда;

  4. Риск ухудшения прибыли при учете затрат на торговлю.

Наибольший риск заключается в задержке суждения из-за множества индикаторов, вызывающих упущенную лучшую цену входа и потенциал прибыли. Кроме того, контроль за снижением далеко не идеален, с значительным риском снижения. Когда фундаментальная тенденция отменяется, пока индикаторы еще не отражают ее, могут произойти потери. Торговые затраты на фактическое развертывание также могут подорвать прибыль.

Направления к улучшению

  1. Включить стоп-лосс для улучшения контроля за использованием;

  2. Оптимизировать параметры для уменьшения задержки показателей;

  3. Добавление дополнительных фундаментальных показателей для повышения точности;

  4. Используйте машинное обучение для оптимизации динамических параметров.

Приоритеты оптимизации включают лучшее управление снижением с помощью стоп-лосса для блокировки прибыли и снижения снижения. Также важна настройка параметров для уменьшения задержки индикатора и улучшения отзывчивости. Более фундаментальные индикаторы также могут помочь улучшить точность. Применение машинного обучения для динамической оптимизации параметров значительно повысит стабильность стратегии.

Резюме

Эта стратегия сочетает в себе несколько индикаторов для определения направления тренда и использует подход отслеживания тренда в своей конструкции для улучшения точности и прибыльности. Ее сильные стороны включают комбинации индикаторов, акцент на отслеживании тренда и включение фундаментальных факторов. Но остаются такие проблемы, как задержка суждения, неадекватный контроль снижения. Будущие улучшения могут исходить из оптимизации параметров, интеграции стоп-лосса, более фундаментальных индикаторов и машинного обучения для динамической оптимизации, чтобы сделать стратегию более эффективной на практике.


/*backtest
start: 2023-11-08 00:00:00
end: 2023-11-15 00:00:00
period: 1m
basePeriod: 1m
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
*/

// This source code is subject to the terms of the Mozilla Public License 2.0 at https://mozilla.org/MPL/2.0/
// © RolandoSantos

//@version=4
strategy(title = "VWAP Candles Strategy", overlay=true, shorttitle = "VWAP Cndl",  default_qty_type=strategy.cash, default_qty_value=10000, initial_capital=10000)

//Make inputs that set the take profit % 
longProfitPerc = input(title="Take Long Profit % ", minval=0.0, step=0.1, defval=0.3) / 100
shortProfitPerc = input(title="Take Short Profit % ", minval=0.0, step=0.1, defval=0.95) / 100

tp = input(100, "Take Profit % QTY (How much profit you want to take after take profit target is triggered)")

// Figure out take profit price
longExitPrice  = strategy.position_avg_price * (1 + longProfitPerc)
shortExitPrice  = strategy.position_avg_price * (1 - shortProfitPerc)

//Use NYSE for Copp Curve entries and exits//
security = input("", title="Change this if you want to see Copp Curve calculated for current ticker. All Copp Curve calculations are base on NYSE Composite")
ticker = security(security,"", close)

///Copp Curve////

period_ = input(21, title="Length", minval=1)
isCentered = input(false, title="Centered")
barsback = period_/2 + 1
ma = sma(close, period_)
dpo = isCentered ? close[barsback] - ma : close - ma[barsback]


instructions =input(title="Standard Copp settings are (10, 14, 11) however, DOUBLE these lengths as alternate settings to (20,28,22) and you will find it may produce better results, but less trades", defval="-")
wmaLength = input(title="WMA Length (Experiment changing this to longer lengths for less trades, but higher win %)", type=input.integer, defval=20)
longRoCLength = input(title="Long RoC Length", type=input.integer, defval=28)
shortRoCLength = input(title="Short RoC Length", type=input.integer, defval=22)
source = ticker
curve = wma(roc(source, longRoCLength) + roc(source, shortRoCLength), wmaLength)

//////////// QQE////////////QQE///////////////////QQE////////////////////////

// This source code is subject to the terms of the Mozilla Public License 2.0 at https://mozilla.org/MPL/2.0/
// © KivancOzbilgic

//@version=4
src=input(close)
length = input(25,"RSI Length", minval=1)
SSF=input(9, "SF RSI SMoothing Factor", minval=1)
showsignals = input(title="Show Crossing Signals?", type=input.bool, defval=true)
highlighting = input(title="Highlighter On/Off ?", type=input.bool, defval=true)
RSII=ema(rsi(src,length),SSF)
TR=abs(RSII-RSII[1])
wwalpha = 1/ length
WWMA = 0.0
WWMA := wwalpha*TR + (1-wwalpha)*nz(WWMA[1])
ATRRSI=0.0
ATRRSI := wwalpha*WWMA + (1-wwalpha)*nz(ATRRSI[1])
QQEF=ema(rsi(src,length),SSF)
QUP=QQEF+ATRRSI*4.236
QDN=QQEF-ATRRSI*4.236
QQES=0.0
QQES:=QUP<nz(QQES[1]) ? QUP : QQEF>nz(QQES[1]) and QQEF[1]<nz(QQES[1]) ? QDN :  QDN>nz(QQES[1]) ? QDN : QQEF<nz(QQES[1]) and QQEF[1]>nz(QQES[1]) ? QUP : nz(QQES[1])
//QQF=plot(QQEF,"FAST",color.maroon,2)
//QQS=plot(QQES,"SLOW",color=color.blue, linewidth=1)
buySignalr = crossover(QQEF, QQES)
sellSignalr = crossunder(QQEF, QQES)
buyr = QQEF > QQES


////QQE////////////////QQE/////////////////QQE/////////////////

//////////////LSMA//////////////////////////


//  LSMA 1 Settings & Plot
lsma1Length = input(100, minval=1, title="LSMA 1")
lsma1Offset = input(title="LSMA 1 Offset", type=input.integer, defval=0)
lsma1Source = input(close, title="LSMA 1 Source")
lsma1 = linreg(lsma1Source, lsma1Length, lsma1Offset)
lsma1_std_dev = stdev(abs(lsma1[1] - lsma1), lsma1Length)
//plot(lsma1, color=(lsma1 > lsma1[1] ? color.yellow : color.blue), title="LSMA 1", linewidth=2, transp=0)

////////////LSMA///////////////////


//////////////////ADX////////////////////

len = input(14)
th = input(20)

TrueRange = max(max(high-low, abs(high-nz(close[1]))), abs(low-nz(close[1])))
DirectionalMovementPlus = high-nz(high[1]) > nz(low[1])-low ? max(high-nz(high[1]), 0): 0
DirectionalMovementMinus = nz(low[1])-low > high-nz(high[1]) ? max(nz(low[1])-low, 0): 0

SmoothedTrueRange = 0.0
SmoothedTrueRange := nz(SmoothedTrueRange[1]) - (nz(SmoothedTrueRange[1])/len) + TrueRange

SmoothedDirectionalMovementPlus = 0.0
SmoothedDirectionalMovementPlus := nz(SmoothedDirectionalMovementPlus[1]) - (nz(SmoothedDirectionalMovementPlus[1])/len) + DirectionalMovementPlus

SmoothedDirectionalMovementMinus = 0.0
SmoothedDirectionalMovementMinus := nz(SmoothedDirectionalMovementMinus[1]) - (nz(SmoothedDirectionalMovementMinus[1])/len) + DirectionalMovementMinus

DIPlus = SmoothedDirectionalMovementPlus / SmoothedTrueRange * 100
DIMinus = SmoothedDirectionalMovementMinus / SmoothedTrueRange * 100
DX = abs(DIPlus-DIMinus) / (DIPlus+DIMinus)*100
ADX = sma(DX, len)

///////////////////ADX/////////////////////


/////////////sqz momentum/////////////////////////

//
// @author LazyBear & ChrisMoody complied by GIS_ABC
//
lengthBB = input(20, title="BB Length")
mult = input(2.0,title="BB MultFactor")
lengthKC=input(20, title="KC Length")
multKC = input(1.5, title="KC MultFactor")

useTrueRange = input(true, title="Use TrueRange (KC)")

// Calculate BB
sourceBB = close
basis = sma(sourceBB, lengthBB)
dev = multKC * stdev(source, lengthBB)
upperBB = basis + dev
lowerBB = basis - dev

// Calculate KC
maKC = sma(sourceBB, lengthKC)
rangeKC = useTrueRange ? tr : (high - low)
rangema = sma(rangeKC, lengthKC)
upperKC = maKC + rangema * multKC
lowerKC = maKC - rangema * multKC

sqzOn  = (lowerBB > lowerKC) and (upperBB < upperKC)
sqzOff = (lowerBB < lowerKC) and (upperBB > upperKC)
noSqz  = (sqzOn == false) and (sqzOff == false)

val = linreg(source  -  avg(avg(highest(high, lengthKC), lowest(low, lengthKC)),sma(close,lengthKC)),lengthKC,0)


////////////////////////////

/////// RSI on EMA/////////////////

lenrsi = input(13, minval=1, title="Length")
srcrsi = linreg(hlc3,100,0)
up = rma(max(change(srcrsi), 0), lenrsi)
down = rma(-min(change(srcrsi), 0), lenrsi)
rsi = down == 0 ? 100 : up == 0 ? 0 : 100 - (100 / (1 + up / down))
rsicolor = rsi > rsi[1] ? color.green : color.red
//plot(rsi,color = rsicolor)
//hline(20,color=color.green)
//hline(80,color=color.red)
vwaprsi = rsi(vwap(hlc3),13)
vwaprsicolor = vwaprsi > vwaprsi[1] ? color.blue : color.yellow
emarsi = ema(rsi,13)
emarsicolor = emarsi > emarsi[1] ? color.green : color.red
//plot(emarsi,color=emarsicolor)
//plot(vwaprsi,color=vwaprsicolor)

/////// RSI on VWMA/////////////////

lenrsiv = input(23, minval=1, title="Length RSI VWMA")
srcrsiv = vwma(linreg(close,23,0),23)
upv = rma(max(change(srcrsiv), 0), lenrsiv)
downv = rma(-min(change(srcrsiv), 0), lenrsiv)
rsiv = downv == 0 ? 100 : upv == 0 ? 0 : 100 - (100 / (1 + upv / downv))
rsicolorv = rsiv > rsiv[1] ? color.green : color.red

/////////////////////////////////////

/////////////////////////////////////

////////////////coral trend////////////////////
//
// @author LazyBear 
// List of all my indicators: 
// https://docs.google.com/document/d/15AGCufJZ8CIUvwFJ9W-IKns88gkWOKBCvByMEvm5MLo/edit?usp=sharing
// 
//study(title="Coral Trend Indicator [LazyBear]", shorttitle="CTI_LB", overlay=true)
srcCT=close
i1 = 1.0
i2 = 1.0
i3 = 1.0
i4 = 1.0
i5 = 1.0
i6 = 1.0

sm =input(21, title="Smoothing Period")
cd = input(0.4, title="Constant D")
ebc=input(false, title="Color Bars")
ribm=input(false, title="Ribbon Mode")
di = (sm - 1.0) / 2.0 + 1.0
c1 = 2 / (di + 1.0)
c2 = 1 - c1
c3 = 3.0 * (cd * cd + cd * cd * cd)
c4 = -3.0 * (2.0 * cd * cd + cd + cd * cd * cd)
c5 = 3.0 * cd + 1.0 + cd * cd * cd + 3.0 * cd * cd
i1 := c1*srcCT + c2*nz(i1[1])
i2 := c1*i1 + c2*nz(i2[1])
i3 := c1*i2 + c2*nz(i3[1])
i4 := c1*i3 + c2*nz(i4[1])
i5 := c1*i4 + c2*nz(i5[1])
i6 := c1*i5 + c2*nz(i6[1])

bfr = -cd*cd*cd*i6 + c3*(i5) + c4*(i4) + c5*(i3)
// --------------------------------------------------------------------------
// For the Pinescript coders: Determining trend based on the mintick step. 
// --------------------------------------------------------------------------
//bfrC = bfr - nz(bfr[1]) > syminfo.mintick ? green : bfr - nz(bfr[1]) < syminfo.mintick ? red : blue
//bfrC = bfr > nz(bfr[1]) ? green : bfr < nz(bfr[1])  ? red : blue
//tc=ebc?gray:bfrC
//plot(ribm?na:bfr, title="Trend", linewidth=3)
//bgcolor(ribm?bfrC:na, transp=50)
//barcolor(ebc?bfrC:na)
////////////////////////////////////////////////////////////////

///////////////////VWAP///////////////////



//------------------------------------------------

//------------------------------------------------
NormalVwap=vwap(hlc3)
H = vwap(high)
L = vwap(low)
O = vwap(open)
C = vwap(close)

left = 30

left_low = lowest(left)
left_high = highest(left)
newlow = low <= left_low
newhigh = high >= left_high

q = barssince(newlow)
w = barssince(newhigh)
col2 = q < w ?  #8B3A3A : #9CBA7F
col2b=O > C?color.red:color.lime


AVGHL=avg(H,L)
AVGOC=avg(O,C)
col=AVGHL>AVGOC?color.lime:color.red
col3=open > AVGOC?color.lime:color.red
//plotcandle(O,H,L,C,color=col2b)
//plot(H, title="VWAP", color=red)
//plot(L, title="VWAP", color=lime)
//plot(O, title="VWAP", color=blue)
//plot(C, title="VWAP", color=black)

//plot(NormalVwap, color=col2b)


/////////////////////////////////////////////////////////////////////////////


///Trade Conditions///
t = time(timeframe.period, "0930-1500")

long = vwaprsi > vwaprsi[1] and rsi>rsi[1] and vwaprsi < 20 //vwaprsi > 98 and rsi > 50 and rsi[1] < rsi and rsi[1] < rsi[2] //crossover(rsi,20)//O<C  and O > linreg(hlc3,100,0) and linreg(hlc3,100,0) > linreg(hlc3,100,0)[1] and AVGHL>AVGOC and t //O < C  and close > vwap(hlc3) and ADX > ADX[1]  //and val > nz(val[1]) and close > vwap(hlc3) and open > sma(close,23) and close > vwap(hlc3)  and t  //and rsi > rsi[1] and open > ema(close,13) and open > bfr and bfr > bfr[1]  
close_long = crossover(vwaprsi,99.8)  //C < O // linreg(hlc3,100,0) and linreg(hlc3,100,0) < linreg(hlc3,100,0)[1] //O > C and val < nz(val[1]) // and close < vwap(hlc3) 
close_short = rsiv > rsiv[1] and rsiv[2] > rsiv[1]//vwaprsi > vwaprsi[1] or rsi > rsi[1] // vwaprsi > 99 and rsi > 99 and rsi > rsi[1] and vwaprsi > vwaprsi[1]//vwaprsi > vwaprsi[1] and rsi>rsi[1] and vwaprsi < 20 //vwaprsi > 98 and rsi > 50 and rsi[1] < rsi and rsi[1] < rsi[2] //crossover(rsi,20)//O<C  and O > linreg(hlc3,100,0) and linreg(hlc3,100,0) > linreg(hlc3,100,0)[1] and AVGHL>AVGOC and t //O < C  and close > vwap(hlc3) and ADX > ADX[1]  //and val > nz(val[1]) and close > vwap(hlc3) and open > sma(close,23) and close > vwap(hlc3)  and t  //and rsi > rsi[1] and open > ema(close,13) and open > bfr and bfr > bfr[1]  
short = rsiv > 95 and rsiv < rsiv[1] and rsiv[2] < rsiv[1] //vwaprsi < 1 and rsi < 1 and rsi < rsi[1] and vwaprsi < vwaprsi[1] and t //crossover(vwaprsi,99.8)  //C < O // linreg(hlc3,100,0) and linreg(hlc3,100,0) < linreg(hlc3,100,0)[1] //O > C and val < nz(val[1]) // and close < vwap(hlc3) 

//long = vwaprsi > vwaprsi[1] and emarsi > emarsi[1] and emarsi[2] > emarsi[1] and ADX > 25//O<C  and O > linreg(hlc3,100,0) and linreg(hlc3,100,0) > linreg(hlc3,100,0)[1] and AVGHL>AVGOC and t //O < C  and close > vwap(hlc3) and ADX > ADX[1]  //and val > nz(val[1]) and close > vwap(hlc3) and open > sma(close,23) and close > vwap(hlc3)  and t  //and rsi > rsi[1] and open > ema(close,13) and open > bfr and bfr > bfr[1]  
//close_long = vwaprsi < vwaprsi[1] or emarsi < emarsi[1]//C < O // linreg(hlc3,100,0) and linreg(hlc3,100,0) < linreg(hlc3,100,0)[1] //O > C and val < nz(val[1]) // and close < vwap(hlc3) 
//close_long = O>C  or lsma1 < H  //  or O > linreg(hlc3,100,0) //and linreg(hlc3,100,0) > linreg(hlc3,100,0)[1] and AVGHL>AVGOC and t //O < C  and close > vwap(hlc3) and ADX > ADX[1]  //and val > nz(val[1]) and close > vwap(hlc3) and open > sma(close,23) and close > vwap(hlc3)  and t  //and rsi > rsi[1] and open > ema(close,13) and open > bfr and bfr > bfr[1]  
//long = rsi > rsi[1] and rsi[1] >rsi[2] and lsma1 > lsma1[1] and bfr > bfr[1] and O<C and lsma1 > L  and close > close[1] and ADX > ADX[1] and ADX[1] > ADX[2] and ADX > 20 and rsi > rsi[1] and t   // linreg(hlc3,100,0) and linreg(hlc3,100,0) < linreg(hlc3,100,0)[1] //O > C and val < nz(val[1]) // and close < vwap(hlc3) 

//close_short = O<C  or lsma1 > H  //  or O > linreg(hlc3,100,0) //and linreg(hlc3,100,0) > linreg(hlc3,100,0)[1] and AVGHL>AVGOC and t //O < C  and close > vwap(hlc3) and ADX > ADX[1]  //and val > nz(val[1]) and close > vwap(hlc3) and open > sma(close,23) and close > vwap(hlc3)  and t  //and rsi > rsi[1] and open > ema(close,13) and open > bfr and bfr > bfr[1]  
//short = rsi < rsi[1] and rsi[1] <rsi[2] and lsma1 < lsma1[1] and bfr < bfr[1] and O>C and lsma1 < L  and close < close[1] and ADX > ADX[1] and ADX[1] > ADX[2] and ADX > 20 and rsi < rsi[1] and t   // linreg(hlc3,100,0) and linreg(hlc3,100,0) < linreg(hlc3,100,0)[1] //O > C and val < nz(val[1]) // and close < vwap(hlc3) 


/// Start date
startDate = input(title="Start Date", defval=1, minval=1, maxval=31)
startMonth = input(title="Start Month", defval=1, minval=1, maxval=12)
startYear = input(title="Start Year", defval=2021, minval=1800, maxval=2100)


// See if this bar's time happened on/after start date
afterStartDate = true


///Entries and Exits//
if (long and afterStartDate)
    strategy.entry("Long", strategy.long, comment = "Open Long")
//    strategy.close("Short", strategy.short,qty_percent=100, comment = "close Short")
if (short and afterStartDate)
    strategy.entry("Short", strategy.short, comment = "Open Short")
    
    
if (close_long and afterStartDate  )
    strategy.close("Long", strategy.long, qty_percent=100, comment="close Long")
//    strategy.entry("Short", strategy.short, comment="Open Short")

if (close_short and afterStartDate  )
    strategy.close("Short", strategy.short, qty_percent=100, comment="close Long")

if ( hour(time) == 15 and minute(time) > 15 ) 
    strategy.close_all()


//Submit exit orders based on take profit price
if (strategy.position_size > 0 and afterStartDate)
    strategy.exit(id="Long", qty_percent=tp, limit=longExitPrice)

if (strategy.position_size < 0 and afterStartDate)
    strategy.exit(id="Short", qty_percent=tp, limit=shortExitPrice)

Больше