
Эта стратегия является количественной торговой стратегией, основанной на двунаправленных прорывах в ценовых колебаниях. Она использует высокие и низкие точки пивота в качестве ключевых уровней сопротивления для поддержки цены, и делает больше, когда цена прорывает высокие точки пивота, и делает больше, когда она прорывает низкие точки пивота, чтобы реализовать двунаправленную операцию.
Основная логика этой стратегии основана на двухстороннем прорыве цены в ключевых точках. В частности, есть несколько шагов:
Вычислить высокие и низкие точки Pivot в заданном периоде. Здесь используются функции ta.pivothigh () и ta.pivotlow () для вычисления высоких цен за последние 2 дня и низких цен за последний день.
Когда цена пробивает ключевые высокие точки, рассчитанные выше, делать дополнительный вход. Когда цена пробивает ключевые низкие точки, делать короткий вход.
При использовании стоп-лист стоп-убыток. При использовании стоп-убыток цена стоп-убытка составляет высокую точку + единицу минимального изменения цены. При использовании стоп-убыток цена стоп-убытка составляет низкую точку - единицу минимального изменения цены.
На карте зафиксированы ключевые высокие и низкие точки, что позволяет сделать интуитивный вывод.
Таким образом, когда происходит колебание цены, можно вовремя войти в рынок, когда ключевые точки прорыва, и быстро остановить потерю, чтобы получить прибыль. Когда цена постоянно прорывает новый высокий или новый низкий, стратегия может достичь многократной накопительной прибыли.
В этой стратегии двустороннего прорыва есть следующие преимущества:
Простая, понятная и простая в реализации. Стратегия заключается в том, чтобы пробиться через высокие и низкие точки Pivot.
Легкость установки стоп-порога. Продолжайте делать открытые позиции с высокой и низкой точкой + минимальным расстоянием от изменения в качестве стоп-порога, чтобы быстро остановить потерю и эффективно контролировать риск.
Это позволяет использовать стратегию в обоих направлениях, независимо от того, будет ли рынок идти вверх или вниз.
Подходит для шокирующих ситуаций. Когда цены часто поднимаются и падают, стратегия может часто входить в поле и получать прибыль.
Несмотря на все вышеперечисленные преимущества, существуют риски, о которых следует помнить:
Неправильное определение ключевых точек может привести к увеличению убытков. Если ключевые высокие и низкие точки установлены неправильно, в крайних случаях может последовать высокая и низкая.
После окончания шока может начаться убыток. Когда цена начинает появляться в виде одностороннего прорыва, а не шока, эта стратегия затрудняется для прибыли.
Прорыв может быть кратковременным ложным прорывом. В кратковременном периоде также может возникать ложный прорыв, что приводит к ошибочным сделкам стратегии.
В целом, эта стратегия лучше подходит для использования в шокирующих ситуациях. Инвесторы должны быть осторожны с оценкой ситуации и избегать использования этой стратегии в трендовых ситуациях.
С учетом вышеперечисленных рисков, существует место для оптимизации этой стратегии в следующих аспектах:
Интеллектуальный выбор параметров ключевых высоких и низких точек. Система может автоматически оптимизировать выбор наиболее подходящих параметров ключевых точек с помощью методов машинного обучения.
В сочетании с трендовым суждением. Добавление логики суждения о тренде на основе стратегии, использование стратегии в шокирующей ситуации, закрытие стратегии в односторонней тенденции, что снижает потери.
Увеличение стратегии остановки убытков. Можно разработать более тонкие стратегии остановки убытков, такие как перемещение убытков, промежуточные прорывы убытков и т. Д., Чтобы еще больше контролировать риск.
Эта стратегия является простой и практичной двусторонней стратегией прорыва. Она основана на прорыве в ценовых ключевых точках для входа в рынок и устанавливает контролируемый риск по гарантии остановки. Эта стратегия подходит для шокирующих ситуаций, когда можно получить прибыль от двусторонней торговли.
/*backtest
start: 2023-12-01 00:00:00
end: 2023-12-31 23:59:59
period: 2h
basePeriod: 15m
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
*/
//@version=5
strategy('Monthly Returns with Benchmark', overlay=true, default_qty_type=strategy.percent_of_equity, default_qty_value=25, commission_type=strategy.commission.percent, commission_value=0.1)
////////////
// Inputs //
// Pivot points inputs
leftBars = input(2, group = "Pivot Points")
rightBars = input(1, group = "Pivot Points")
// Styling inputs
prec = input(2, title='Return Precision', group = "Monthly Table")
from_date = input(timestamp("01 Jan 2000 00:00 +0000"), "From Date", group = "Monthly Table")
prof_color = input.color(color.green, title = "Gradient Colors", group = "Monthly Table", inline = "colors")
loss_color = input.color(color.red, title = "", group = "Monthly Table", inline = "colors")
// Benchmark inputs
use_cur = input.bool(true, title = "Use current Symbol for Benchmark", group = "Benchmark")
symb_bench = input('BTC_USDT:swap', title = "Benchmark", group = "Benchmark")
disp_bench = input.bool(true, title = "Display Benchmark?", group = "Benchmark")
disp_alpha = input.bool(true, title = "Display Alpha?", group = "Benchmark")
// Pivot Points Strategy
swh = ta.pivothigh(leftBars, rightBars)
swl = ta.pivotlow(leftBars, rightBars)
hprice = 0.0
hprice := not na(swh) ? swh : hprice[1]
lprice = 0.0
lprice := not na(swl) ? swl : lprice[1]
le = false
le := not na(swh) ? true : le[1] and high > hprice ? false : le[1]
se = false
se := not na(swl) ? true : se[1] and low < lprice ? false : se[1]
if le
strategy.entry('PivRevLE', strategy.long, comment='PivRevLE', stop=hprice + syminfo.mintick)
if se
strategy.entry('PivRevSE', strategy.short, comment='PivRevSE', stop=lprice - syminfo.mintick)
plot(hprice, color=color.new(color.green, 0), linewidth=2)
plot(lprice, color=color.new(color.red, 0), linewidth=2)
///////////////////
// MONTHLY TABLE //
new_month = month(time) != month(time[1])
new_year = year(time) != year(time[1])
eq = strategy.equity
bench_eq = close
// benchmark eq
bench_eq_htf = request.security(symb_bench, timeframe.period, close)
if (not use_cur)
bench_eq := bench_eq_htf
bar_pnl = eq / eq[1] - 1
bench_pnl = bench_eq / bench_eq[1] - 1
cur_month_pnl = 0.0
cur_year_pnl = 0.0
// Current Monthly P&L
cur_month_pnl := bar_index == 0 ? 0 :
time >= from_date and (time[1] < from_date or new_month) ? bar_pnl :
(1 + cur_month_pnl[1]) * (1 + bar_pnl) - 1
// Current Yearly P&L
cur_year_pnl := bar_index == 0 ? 0 :
time >= from_date and (time[1] < from_date or new_year) ? bar_pnl :
(1 + cur_year_pnl[1]) * (1 + bar_pnl) - 1
bench_cur_month_pnl = 0.0
bench_cur_year_pnl = 0.0
// Current Monthly P&L - Bench
bench_cur_month_pnl := bar_index == 0 or (time[1] < from_date and time >= from_date) ? 0 :
time >= from_date and new_month ? bench_pnl :
(1 + bench_cur_month_pnl[1]) * (1 + bench_pnl) - 1
// Current Yearly P&L - Bench
bench_cur_year_pnl := bar_index == 0 ? 0 :
time >= from_date and (time[1] < from_date or new_year) ? bench_pnl :
(1 + bench_cur_year_pnl[1]) * (1 + bench_pnl) - 1
var month_time = array.new_int(0)
var year_time = array.new_int(0)
var month_pnl = array.new_float(0)
var year_pnl = array.new_float(0)
var bench_month_pnl = array.new_float(0)
var bench_year_pnl = array.new_float(0)
// Filling monthly / yearly pnl arrays
if array.size(month_time) > 0
if month(time) == month(array.get(month_time, array.size(month_time) - 1))
array.pop(month_pnl)
array.pop(bench_month_pnl)
array.pop(month_time)
if array.size(year_time) > 0
if year(time) == year(array.get(year_time, array.size(year_time) - 1))
array.pop(year_pnl)
array.pop(bench_year_pnl)
array.pop(year_time)
if (time >= from_date)
array.push(month_time, time)
array.push(year_time, time)
array.push(month_pnl, cur_month_pnl)
array.push(year_pnl, cur_year_pnl)
array.push(bench_year_pnl, bench_cur_year_pnl)
array.push(bench_month_pnl, bench_cur_month_pnl)
// Monthly P&L Table
var monthly_table = table(na)
if array.size(year_pnl) > 0 and barstate.islastconfirmedhistory
monthly_table := table.new(position.bottom_right, columns=15, rows=array.size(year_pnl) * 3 + 5, border_width=1)
// Fill monthly performance
table.cell(monthly_table, 0, 0, 'Perf', bgcolor = #999999)
table.cell(monthly_table, 1, 0, 'Jan', bgcolor = #999999)
table.cell(monthly_table, 2, 0, 'Feb', bgcolor = #999999)
table.cell(monthly_table, 3, 0, 'Mar', bgcolor = #999999)
table.cell(monthly_table, 4, 0, 'Apr', bgcolor = #999999)
table.cell(monthly_table, 5, 0, 'May', bgcolor = #999999)
table.cell(monthly_table, 6, 0, 'Jun', bgcolor = #999999)
table.cell(monthly_table, 7, 0, 'Jul', bgcolor = #999999)
table.cell(monthly_table, 8, 0, 'Aug', bgcolor = #999999)
table.cell(monthly_table, 9, 0, 'Sep', bgcolor = #999999)
table.cell(monthly_table, 10, 0, 'Oct', bgcolor = #999999)
table.cell(monthly_table, 11, 0, 'Nov', bgcolor = #999999)
table.cell(monthly_table, 12, 0, 'Dec', bgcolor = #999999)
table.cell(monthly_table, 13, 0, ' ', bgcolor = #999999)
table.cell(monthly_table, 14, 0, 'Year', bgcolor = #999999)
max_abs_y = math.max(math.abs(array.max(year_pnl)), math.abs(array.min(year_pnl)))
max_abs_m = math.max(math.abs(array.max(month_pnl)), math.abs(array.min(month_pnl)))
for yi = 0 to array.size(year_pnl) - 1 by 1
table.cell(monthly_table, 0, yi + 1, str.tostring(year(array.get(year_time, yi))), bgcolor=#cccccc)
table.cell(monthly_table, 13, yi + 1, ' ', bgcolor=#999999)
y_color = color.from_gradient(array.get(year_pnl, yi), -max_abs_y, max_abs_y, loss_color, prof_color)
table.cell(monthly_table, 14, yi + 1, str.tostring(math.round(array.get(year_pnl, yi) * 100, prec)), bgcolor=y_color)
for mi = 0 to array.size(month_time) - 1 by 1
m_row = year(array.get(month_time, mi)) - year(array.get(year_time, 0)) + 1
m_col = month(array.get(month_time, mi))
m_color = color.from_gradient(array.get(month_pnl, mi), -max_abs_m, max_abs_m, loss_color, prof_color)
table.cell(monthly_table, m_col, m_row, str.tostring(math.round(array.get(month_pnl, mi) * 100, prec)), bgcolor=m_color)
// Fill benchmark performance
next_row = array.size(year_pnl) + 1
if (disp_bench)
table.cell(monthly_table, 0, next_row, 'Bench', bgcolor=#999999)
table.cell(monthly_table, 1, next_row, 'Jan', bgcolor=#999999)
table.cell(monthly_table, 2, next_row, 'Feb', bgcolor=#999999)
table.cell(monthly_table, 3, next_row, 'Mar', bgcolor=#999999)
table.cell(monthly_table, 4, next_row, 'Apr', bgcolor=#999999)
table.cell(monthly_table, 5, next_row, 'May', bgcolor=#999999)
table.cell(monthly_table, 6, next_row, 'Jun', bgcolor=#999999)
table.cell(monthly_table, 7, next_row, 'Jul', bgcolor=#999999)
table.cell(monthly_table, 8, next_row, 'Aug', bgcolor=#999999)
table.cell(monthly_table, 9, next_row, 'Sep', bgcolor=#999999)
table.cell(monthly_table, 10, next_row, 'Oct', bgcolor=#999999)
table.cell(monthly_table, 11, next_row, 'Nov', bgcolor=#999999)
table.cell(monthly_table, 12, next_row, 'Dec', bgcolor=#999999)
table.cell(monthly_table, 13, next_row, ' ', bgcolor = #999999)
table.cell(monthly_table, 14, next_row, 'Year', bgcolor=#999999)
max_bench_abs_y = math.max(math.abs(array.max(bench_year_pnl)), math.abs(array.min(bench_year_pnl)))
max_bench_abs_m = math.max(math.abs(array.max(bench_month_pnl)), math.abs(array.min(bench_month_pnl)))
for yi = 0 to array.size(year_time) - 1 by 1
table.cell(monthly_table, 0, yi + 1 + next_row + 1, str.tostring(year(array.get(year_time, yi))), bgcolor=#cccccc)
table.cell(monthly_table, 13, yi + 1 + next_row + 1, ' ', bgcolor=#999999)
y_color = color.from_gradient(array.get(bench_year_pnl, yi), -max_bench_abs_y, max_bench_abs_y, loss_color, prof_color)
table.cell(monthly_table, 14, yi + 1 + next_row + 1, str.tostring(math.round(array.get(bench_year_pnl, yi) * 100, prec)), bgcolor=y_color)
for mi = 0 to array.size(month_time) - 1 by 1
m_row = year(array.get(month_time, mi)) - year(array.get(year_time, 0)) + 1
m_col = month(array.get(month_time, mi))
m_color = color.from_gradient(array.get(bench_month_pnl, mi), -max_bench_abs_m, max_bench_abs_m, loss_color, prof_color)
table.cell(monthly_table, m_col, m_row + next_row + 1, str.tostring(math.round(array.get(bench_month_pnl, mi) * 100, prec)), bgcolor=m_color)
// Fill Alpha
if (disp_alpha)
next_row := array.size(year_pnl) * 2 + 3
table.cell(monthly_table, 0, next_row, 'Alpha', bgcolor=#999999)
table.cell(monthly_table, 1, next_row, 'Jan', bgcolor=#999999)
table.cell(monthly_table, 2, next_row, 'Feb', bgcolor=#999999)
table.cell(monthly_table, 3, next_row, 'Mar', bgcolor=#999999)
table.cell(monthly_table, 4, next_row, 'Apr', bgcolor=#999999)
table.cell(monthly_table, 5, next_row, 'May', bgcolor=#999999)
table.cell(monthly_table, 6, next_row, 'Jun', bgcolor=#999999)
table.cell(monthly_table, 7, next_row, 'Jul', bgcolor=#999999)
table.cell(monthly_table, 8, next_row, 'Aug', bgcolor=#999999)
table.cell(monthly_table, 9, next_row, 'Sep', bgcolor=#999999)
table.cell(monthly_table, 10, next_row, 'Oct', bgcolor=#999999)
table.cell(monthly_table, 11, next_row, 'Nov', bgcolor=#999999)
table.cell(monthly_table, 12, next_row, 'Dec', bgcolor=#999999)
table.cell(monthly_table, 13, next_row, '', bgcolor=#999999)
table.cell(monthly_table, 14, next_row, 'Year', bgcolor=#999999)
max_alpha_abs_y = 0.0
for yi = 0 to array.size(year_time) - 1 by 1
if (math.abs(array.get(year_pnl, yi) - array.get(bench_year_pnl, yi)) > max_alpha_abs_y)
max_alpha_abs_y := math.abs(array.get(year_pnl, yi) - array.get(bench_year_pnl, yi))
max_alpha_abs_m = 0.0
for mi = 0 to array.size(month_pnl) - 1 by 1
if (math.abs(array.get(month_pnl, mi) - array.get(bench_month_pnl, mi)) > max_alpha_abs_m)
max_alpha_abs_m := math.abs(array.get(month_pnl, mi) - array.get(bench_month_pnl, mi))
for yi = 0 to array.size(year_time) - 1 by 1
table.cell(monthly_table, 0, yi + 1 + next_row + 1, str.tostring(year(array.get(year_time, yi))), bgcolor=#cccccc)
table.cell(monthly_table, 13, yi + 1 + next_row + 1, ' ', bgcolor=#999999)
y_color = color.from_gradient(array.get(year_pnl, yi) - array.get(bench_year_pnl, yi), -max_alpha_abs_y, max_alpha_abs_y, loss_color, prof_color)
table.cell(monthly_table, 14, yi + 1 + next_row + 1, str.tostring(math.round((array.get(year_pnl, yi) - array.get(bench_year_pnl, yi)) * 100, prec)), bgcolor=y_color)
for mi = 0 to array.size(month_time) - 1 by 1
m_row = year(array.get(month_time, mi)) - year(array.get(year_time, 0)) + 1
m_col = month(array.get(month_time, mi))
m_color = color.from_gradient(array.get(month_pnl, mi) - array.get(bench_month_pnl, mi), -max_alpha_abs_m, max_alpha_abs_m, loss_color, prof_color)
table.cell(monthly_table, m_col, m_row + next_row + 1, str.tostring(math.round((array.get(month_pnl, mi) - array.get(bench_month_pnl, mi)) * 100, prec)), bgcolor=m_color)